The Gallium Neutrino Cross Section and its Uncertainty


The Gallium Neutrino Cross Section and its Uncertainty

W. C. Haxton, E. J. Rule, S. R. Elliott, V.N. Gavrin, T. V. Ibragimova.


In the recent Baksan Experiment on Sterile Transitions (BEST), a suppressed rate of neutrino absorption on a gallium target was observed, consistent with earlier results from neutrino source calibrations of the SAGE and GALLEX/GNO solar neutrino experiments. The BEST collaboration, utilizing a 3.4 MCi 51Cr neutrino source, found observed-to-expected counting rates at two very short baselines of R=0.791 plus/minus 0.05 and 0.766 plus/minus 0.05, respectively. Among recent neutrino experiments, BEST is notable for the simplicity of both its neutrino spectrum, line neutrinos from an electron-capture source whose intensity can be measured to a estimated precision of 0.23%, and its absorption cross section, where the precisely known rate of electron capture to the gallium ground state, 71Ge(e,nue)71Ga(g.s.), establishes a minimum value. However, the absorption cross section uncertainty is a common systematic in the BEST, SAGE, and GALLEX/GNO neutrino source experiments. Here we update that cross section, considering a variety of electroweak corrections and the role of transitions to excited states, to establish both a central value and reasonable uncertainty, thereby enabling a more accurate assessment of the statistical significance of the gallium anomalies. Results are given for 51Cr and 37Ar sources. The revised neutrino capture rates are used in a re-evaluation of the BEST and gallium anomalies.

Associated Fellows