Multi-messenger astronomy with high-energy neutrinos
Multi-messenger astronomy with high-energy neutrinos
Pacific
Speaker(s) Anna Franckowiak (DESY and U. of Bochum, Germany)
Video
Description
Please contact lukas.graf@berkeley.edu or jeffberryman@berkeley.edu for zoom links.
Comic rays are charged particles (mainly protons) that bombard the Earth from all directions reaching energies up to 10 million times what can be archived by the most powerful man-made accelerator, the LHC. Their origin is difficult to trace, because cosmic rays are deflected by magnetic fields on their journey from their source to Earth. However, cosmic rays produce gamma-ray photons and neutrinos in interactions with matter and photon fields in or close to their source. Being neutral those secondary particles can travel undeflected and ultimately point back to the source. While gamma rays are not solely produced in interactions of cosmic ray protons, neutrinos provide a smoking-gun signature for acceleration of protons (or heavier nuclei).
A diffuse flux of cosmic neutrinos was first discovered by the cubic-kilometer-sized IceCube detector located at the South Pole in 2013. I will present the ongoing search for the origin of those neutrinos using multi-messenger studies and discuss promising candidate sources with a focus on the new promising neutrino source class of tidal disruption events.
Files