Multi-messenger Astronomy with high-energy Neutrinos

Anna Franckowiak

HELMHOLTZ Young Investigators N3AS Seminar, Berkeley, 15.2.2022

Data is collected here and sent by satellite to the data warehouse at UW-Madison

Digital Optical Module (DOM)

2450 m

IceCube

detecto

5,160 DOMs deployed in the ice

Pole Station, Antarctica A National Science Foundationmanaged research facility

Amundsen–Scott South

Event Signatures

"shower" events: neutrinos interacting inside the detector

"track" events: muon neutrinos filtered by the Earth

RUB

Multi-messenger Diffuse Flux

Similar energies in gamma rays, neutrinos & cosmic rays injected into our Universe!

Where to the neutrinos come from?

Where do the Neutrinos come from?

Sky map of likely cosmic neutrinos > 30 TeV (2010 - 2016)

Compatible with an isotropic distribution

 \rightarrow extragalactic origin of cosmic neutrinos

IceCube Target of Opportunity Program Public alerts since April 2016

- Single high-energy muon track events (> ~100TeV)
- "Gold" alert stream: 10 / yr, ~5 / yr of cosmic origin
- Median latency: 30 sec

Goal: Find electromagnetic counterpart

IC-170922A – a 290 TeV Neutrino

Signalness: 56.5%

RUB IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Page 10

IC-170922A – a 290 TeV Neutrino

RUB IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA, Science 2018

Fermi-LAT finds Flaring Source

RUB Fermi-LAT Coll., ApJ 846, 2017, Video credits: Matteo Giomi, Fermi-LAT Collaboration Page 12

Fermi-LAT finds Flaring Blazar, TXS 0506+056

Fermi-LAT finds Flaring Blazar, TXS 0506+056

Fermi-LAT finds Flaring Blazar, TXS 0506+056

3 sigma significance including trials > 6 PeV protons accelerated in the source

Do gamma-ray blazars produce all diffuse neutrinos?

Fermi Blazars

Gamma rays tell us **where** to look for neutrinos

RUB

IceCube Coll. ApJ 835 (2017)

KUB

Other possible sources?

Tidal Disruption Events

~50 TDEs identified, 3 jetted TDEs

The Zwicky Transient Facility (ZTF)

The Zwicky Transient Facility (ZTF) – giant field of view

ZTF Follow-up Pipeline

Reject stars, planets, artifacts, asteroids

 high-energy neutrino alert arrives

2. Observe with ZTF

3. Follow-up with AMPEL

Nordin et al., A&A 631, A147 (2019)

Reject unrelated transients (e.g. Type la Supernovae)

4. Trigger further follow-up observations

Neutrino IC191001A (200 TeV)

Neutrino IC191001A (200 TeV)

Neutrino IC191001A (200 TeV)

Neutrino IC191001A (200 TeV) coincident with Tidal Disruption Event AT2019dsg

Neutrino IC191001A (200 TeV) coincident with Tidal Disruption Event AT2019dsg aka as "Bran Stark"

RUB R. Stein et al., Nature Astronomy 2021

Neutrino IC191001A (200 TeV) coincident with Tidal Disruption Event AT2019dsg aka as "Bran Stark"

Neutrino IC191001A (200 TeV) coincident with Tidal Disruption Event AT2019dsg aka as "Bran Stark"

RUB R. Stein et al., Nature Astronomy 2021

Radio Data reveal long-lasting activity of central engine

Various Neutrino Production Scenarios

Second interesting source! AT2019fdr / "Tywin" coincident with IC200530A

Extreme flare in a narrow-line Seyfert 1 galaxy, classified as likely TDE


```
p = 3.44 \times 10^{-4} (3.4 \sigma)
```

S. Reusch et al. arXiv:2111.09390

Extend search to sample of accretion flares with strong dust echos

Systematic search for coincidence between IceCube public alerts and optical flares that show post-peak neoWISE infrared flares

→ Third coincidence: AT2019aalc (Lancel)

Efficient Acceleration at Eddington Limit?

 These three associated events could produce a significant part of the IceCube high-energy neutrino flux:

 $19^{+22}_{-12}\%$ (90%CL)

- But: "Normal" AGN outshine TDEs by two orders of magnitude why are we not dominated by those?!
- All sources are close to the Eddington limit

\rightarrow Very efficient neutrino production in TDEs?

Next Generation Neutrino Telescopes

IceCube-Gen2 (Phase 1 started)

unique messengers from the high-energy Universe

RUB

Neutrinos can reveal the sources of high-energy cosmic rays

Summary

Sources still unknown → Electromagnetic counterparts are crucial to identify the sources. First compelling candidates found!

