First Results from the Dark Energy Spectroscopic Instrument (DESI)

David Schlegel Lawrence Berkeley National Lab DESI Project Scientist 12 July 2025

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

David Schlege

Thanks to the Department of Energy, our sponsors and 72 participating Institutions

The New York Times

April 4, 2024

A Tantalizing 'Hint' That Astronomers Got Dark Energy All Wrong

Scientists may have discovered a major flaw in their understanding of that mysterious cosmic force. That could be good news for the fate of the universe.

- Largest 3-D map of the universe

David Schlegel, N3AS 2025

What is the Dark Energy Spectroscopic Instrument (DESI)? Largest 2-D map of the universe (until Rubin Observatory in the late 2020s) • Dark Energy experiment, measuring Universe's expansion from $z=4 \rightarrow 0$

What is a map?

What is a map?

3-D positions of planets, stars, galaxies 3-D velocities

6 dimensions

Maps of the Solar System

Observables: 6D information per object: x, y, z, v_x, v_y, v_z (and in principle dv_x, dv_y, dv_z, ...)

What do we learn? Demand consistency w/ physical laws (gravity) Initial conditions, e.g. formation of solar system

Pluto

Maps of the solar system

The speed of light (1676; Jupiter's moons)
Newton's laws of gravity (1687; planetary orbits)
Scale of the solar system (1769; Venus transiting Sun)
Confirmation of Einstein's general relativity (1916, 1919; precession of Mercury's orbit + deflection of stars behind Sun)

David Schlege

Maps of the Universe (Our Universe initial conditions, forces) quantum fluctuations

Observables: 6D information per object: x, y, z, v_x, v_y, v_z

velocities = $\nabla \Phi$

David Schlegel, N3AS 2025

These observables must be consistent with initial conditions + known forces

14

Standard Model of Elementary Particles

David Schlegel, N3AS 2025

Periodic Table of the Elements

I H Manager S Li United S Na	2 IIA Be Beryttum Votor	Atomic Number 13 Name Atuminium Name 26.982 26.982 - Atomic Weight State of matter (color of name) Subcategory in the metal-metalloid-nonmetal trend (color of background) GAS LIQUID Source of name) Alkali metals Alkali metals Lanthanides Alkaline earth metals Actinides Post-transition metals Noble gases										13 IIIA 5 B Beron total 23 13 AL	14 IVA 6 Carbon 12011 24 14 Si	15 VA 7 N 16007 33	16 VIA 8 0 15 5	17 VIIA 9 F 8,378 23 77 Cl
22.16776128 24-1	Magnesium	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	Atuminium 26.982 2.8-0	Silicon 28.085 2-8-4	Phosphorus 30,974 2,4-5	Suttur 32.06 2-6-6	35.45 2-8-7
N K States States	calcium calcium crem crem	21 Sc Scandium 44.955908 2-8-2	22 Ti Titanium 47.847 2-6-10-2	23 V Vanadium 50.945 3-5-72	24 Cr Chromium 515961 3-0-1	25 Mn Manganese S4.938044 2-819-2	26 Fe	27 Co Cobalt 54.933 24.957	28 Ni Nickel 58.492 2-816-2	29 Cu Copper 43.545 2-5-16-1	30 Zn 2000 2000 2000	31 Ga Gallium 49.723 2-8:53	32 Ge Germanium 72,430 2-8-84	33 As Arsonic 74,922 2-8-8-3	34 Se Selenium 78.977 3-854	35 Br 78964 2687
37 Rb Resident 854418 2450.61	Sr Strontium	37 Y Yttrium 88.70584 24.50-52	40 Zr Zirconium 91224 26-38-36-7	41 Nb Nicblum 92,90637 24-8-0-1	42 Mo Molybdenum 55.95 26-16-15-1	43 TC Technetium (98) 24-8-0-7	44 Ru Ruthenium 10107 7-5-15-1	45 Rh Rhedium N2.11 2-5-12-15-1	46 Pd Pattadium 3642 2439-8	AT Ag Silver STAT 24-35-351	48 Cd Cadmium 112.41 24.56-56-2	49 In Indium 114.82 2-8-16-3	50 Sn 18.71 24.56.4	51 Sb Antimony 12134 2418-85	52 Te Telturium 12740 26-8-84	53 todine 125.90 2-8-36-1
55 CS 2270545196 24964641	Ba Barium 17127	57-71 Lanthanides	72 Hf Hafnium 1849 24-8-20-2	73 Ta Tantalum 180,66788 2-6-19-22-19-2	74 W Tungsten 181.84 24-19-19-2	75 Re Rhenium 186.21 2-6-19-20-20	76 Os Osmium 190.20 2-4-30-30-2	77 Ir Iridium 172.22 24-8-32-5-2	78 Pt Platinum 19508 24-8-02-01	79 Au Gold 196.97 26-35-35-36-1	80 Hg Merceyy 200.51 2419-20-362	81 TL Thattium 204.38 2-8-32-8-3	82 Pb Lead 2072 748-27-84	83 Bi Bismuth 208.98 3-8-20-20-20-5	84 Po Potenium (201) 24:16-32-84	85 Att (210) 2-8-9-12-9
B7 Fr Francium (222) retrovitien	Radium Radium ISIN	89-103 Actinides	104 Rf Rotherfordium (267) 24-8-32-82-2	105 Db Debnium (240) 24/8/22/25/2	104 Sg Seeborglam CAN 2430-2232	107 Bh Schrium (210) 248-22-32-32	108 Hs Hassium (277) 25-10-20-34-2	109 Mt Meitnerium (276) 24-8-32-32-8-2	110 DS Dermstadtium (289 74-19-32-32-51	111 Rg Rosentgemtum (242) 24-8-29-29-2	112 Cn Costanticum (285) 24332(3)342	113 Nh Nhonium (260) 24:18:22:32:83	114 Fl Flerovium (359) 24-8-33-32-84	115 Mc Mc (2400 2.8 10 22 20 20 30	116 Lv Livermonium (213) 248-2-32-84	117 TS Tecnessii (290) 14-10-20-
		57 La Laethanum 245 517	58 Ce Genum 14017 25 87847	57 Pr Praseodymum 2610/262	60 Nd Neadymium 144.34 242WES	61 Pm Promethium (145) 1 = 57542	62 Samariam 1638 19558-12	63 Eu Europaum 1919 1919	64 Gd Gadelinam 1123 155551	65 Tb Tethum 156.91 245 Teth	by Dysprestum NO 100 1100 1100	67 Ho Holmuna Vicini Vicini	68 Er Brown 1721 1722 1723 174	67 Tm Tholean Macon 24400452	70 Yb Wierbum 1726 248/3387	The second secon
		Actinium	Th	Pa	Uranium	Np	Plutonium	Americium	Cm	Bk	Cf	Es	Fm	Md	No	Lawrence

27804 27807 (2897) 14822451 14822451 14822451 14822451 1482251 1482251

Standard Model of Elementary Particles

What are the fundamental forces?

The 4 known forces

Strong force binds the nucleus

Weak force in radioactive decay

This is the "standard model" of physics ... supposed to explain everything

David Schlegel, N3AS 2025

Strong force binds the nucleus

Weak force in radioactive decay Electromagnetic force binds atoms

Cosmic maps are <u>not</u> consistent with the <u>known</u> fundamental particles + forces

Dark Matter is most of the mass in the universe

(oops — no Nobel Prize)

rotational velocity [km/s]

200-100

Vera Rubin discovery in the 1970s, explains why galaxies gravitationally bound

distance from center (light years)

Dark matter not yet found with "direct" searches

Lux-Zeplin experiment, 7 tons liquid Xenon 1 mile underground David Schlegel, N3AS 2025

... and we know it's not made of normal matter (baryons)

We can now map where the dark dark matter is gravitationally

Known particles

Dark Energy is most of the mass-energy of the universe

Discovered in 1998 Distant supernova explosions are too faint (Nobel Prize for Perlmutter, Schmidt, Reiss in 2011)

What is Dark Energy? Too much "space" between us + distant galaxies Apparent force accelerating expansion of universe

David Schlegel, NJAS ZUZS

The Fundamental Forces

The 4 known forces Electromagnetic Strong force binds the nucleus force binds atoms Weak force in **Gravitational force** radioactive decay binds the solar system

David Schlegel, N3AS 2025

Dark energy (dominates today)

The Fundamental Forces

The 4 known forces Electromagnetic Strong force binds the nucleus force binds atoms Weak force in **Gravitational force** radioactive decay binds the solar system

David Schlegel, N3AS 2025

Dark energy (dominates today)

Inflation <1 sec after Big Bang)</pre>

Most of the Universe's energy density is Dark Energy

Dark Energy is a component in the universe that can enter Einstein's equations of gravity like a cosmic fluid with a negative equation of state

$$w \equiv \frac{p_{de}}{c^2 \rho_{de}}$$

Negative w < -1/3 gives an accelerating expansion

$$\frac{\ddot{a}}{a} = -4\pi G\rho_{de} \left(\frac{1}{3} + w\right)$$

Dark Energy candidates can have slightly different w values Dark Energy may be dynamic, conventionally parameterized by the scale factor a: $w(a) = w_0 + (1-a) w_a$

David Schlegel, N3AS 2025

Content of the Universe

Mapping the Universe **Dark Energy domination**

DESI maps in angular coordinates (α,δ) + redshift (z)

Maps are never simply x,y,z

DESI maps in angular coordinates (α, δ) + redshift (z) z= distance + gravity-induced velocity

Maps are never simply x,y,z

gravity erases initial conditions on small (non-linear) scales

Mapping the Universe: Point maps vs. Statistical maps

Galaxies are not a good standard ruler!

...though they have been proposed over the years as "standard-izable", (dating back to Carl Wirtz in 1924), as have galaxy clusters...

Mapping the Universe: Point maps vs. Statistical maps Supernovae are an excellent "standard-izable" candle in intrinsic luminosity

David Schlegel, N3AS 2025

Apparent

$$\log\left(rac{d_{\mathrm{L},0}}{d_{\mathrm{L}}}
ight)^2 = 5\log\left(rac{d_{\mathrm{L},0}}{d_{\mathrm{L}}}
ight)$$

Kim, et al. (1997)

Mapping the Universe: Point maps vs. Statistical maps Supernovae are an excellent "standard-izable" candle in intrinsic luminosity

Large compilations of supernova samples recently published

- Pantheon+(Scolnic+ 2022)
- Dark Energy Survey(DES-SN5YR 2023)
- Union 3 -> Unity (Rubin+ 2024)

Mapping the Universe: Point maps vs. Statistical maps Supernovae are an excellent "standard-izable" candle in intrinsic luminosity Supernova "twinning" can double the accuracy of each supernova distance

Next generation of supernova projects starting • Zwicky Transient Factory (0.6 Gpix) • La Silla Schmidt Southern Survey (0.3 Gpix)

Vera Rubin Observatory (3 Gpix)

Promised improvements with more statistics (millions!) improved flux calibration

Mapping the Universe: Point maps vs. Statistical maps Supernovae are an excellent "standard-izable" candle in intrinsic luminosity

Mapping the Universe: Point maps vs. Statistical maps The beginning of redshift surveys for 3-dimensional maps in 1983

The "Z machine" (now in the Smithsonian) Redshifted 2401 galaxies... 1 galaxy at a time...

Copyright SAO 1998

Huchra, Davis, Latham 1983

The start of measuring statistics of the clustering of galaxies with the 2-point function == excess probability of galaxies at each r

The start of measuring statistics of the clustering of galaxies with the 2-point function == excess probability of galaxies at each r

David Schlegel, N3AS 2025

A SURVEY OF GALAXY REDSHIFTS. V. THE TWO-POINT POSITION AND VELOCITY CORRELATIONS

MARC DAVIS

Departments of Astronomy and Physics, University of California

AND

P. J. E. PEEBLES

Joseph Henry Laboratories, Princeton University Received 1982 August 5; accepted 1982 October 12

2019 Nobel Prize for "contributions to for our understanding of the evolution of the universe"

Sloan Digital Sky Survey (SDSS)

Multiplexing with fiber optic cables to observe 640 galaxies simultaneously ... later upgraded to 1000 ... up to 9000 galaxies/night

SDSS — the first 3-dimensional map to make a good movie with 1 million galaxies

David Schlegel, N3AS 2025

... and forever more in galaxy maps

David Schlegel, N3AS 2025

Credit: D. Eisenstein

... and forever more in galaxy maps

David Schlegel, N3AS 2025

Credit: D. Eisenstein

... and forever more in galaxy maps

These fluctuations of 1 part in 10⁵ gravitationally grow into...

Universe at 380,000 years old (CMB)

David Juliegei, INDAU ZUZU

... and forever more in galaxy maps

Universe at 380,000 years old (CMB)

... and forever more in galaxy maps

David Schlegel, N3AS 2025

Galaxy maps give us two measures: along the line of sight, H(z), + perpenticular to the line-of-sight, $D_A(z)$

$$H(z) = \sqrt{\Omega_M (1+z)^3 + (1-\Omega_M - \Omega_\Lambda)(1+z)^2 + \Omega_\Lambda}$$

$$d_A(z) = \begin{cases} (-K)^{-1/2} \sinh \Bigl[(-K)^{1/2} \chi(z) \Bigr] & K < 0 \ , \\ \chi(z) & K = 0 \ , \\ K^{-1/2} \sin \bigl[K^{1/2} \chi(z) \bigr] & K > 0 \ , \end{cases}$$

where

$$K = 1 - \Omega_M - \Omega_\Lambda, \qquad \chi(z) = \int_0^z \frac{dz'}{H(z')}$$

Derived map with dark energy (artist rendition)

"Baryon Acoustic Oscillations" 150 Mpc = 450 million light years

Derived map without dark energy (artist rendition)

"Baryon Acoustic Oscillations" 150 Mpc = 450 million light years

Dark Energy Spectroscopic Instrument (DESI), 2021-2028 multiplexed with 5000 optical fibers on a robotic focal plane

DESI — a much bigger map with 42 million galaxies... and counting...

Credit: David Kirkby

DESI year 1 results published in April 2024, DESI year 3 results published in March 2025, based upon several samples of galaxies + quasars

David Schlegel, N3AS 2025

+10 million stars

3 million (1.0 < z < 4.0)

16 million (0.6 < z < 1.6) *SDSS: 0.2M*

8 million (0.4 < z < 1.0) SDSS: 1M

13 million (0.1 < z < 0.4) *SDSS: 0.6M*

ost

FIG

LRG

Quasars at z > 2.1 used as a back-light for the Lyman-alpha forest

David Schlegel, N3AS

Quasars at z > 2.1 used as a back-light for the Lyman-alpha forest

David Schlegel, N3AS 2025

DESI analyses were all conducted blinded BAO feature well-measured in 7 samples at 7 redshifts

Overall BAO size

BAO anisotropy

David Schlegel, N3AS 2025

configuration space

Fourier space

0.25

DESI analyses were all conducted blinded Most of the maps underwent some "reconstruction" to remove some of the non-linear gravitational growth

David Schlegel, N3AS 2025

Bright Galaxy Sample, z<0.4, 0.9% distance

David Schlegel, N3AS 2025

Luminous Red Galaxies, 0.4<z<0.6, 0.8% distance

David Schlegel, N3AS 2025

Luminous Red Galaxies, 0.6<z<0.8, 0.7% distance

David Schlegel, N3AS 2025

Luminous Red Galaxies, 0.8<z<1.1, 0.5% distance

4($s^2 \xi_0(s) \left[h^{-2} \mathrm{Mpc} \right]$ 20-2080 60

David Schlegel, N3AS 2025

Emission Line Galaxies, 0.8<z<1.1, 0.9% distance

David Schlegel, N3AS 2025

LRG3 + ELG1, 0.8<z<1.1, 0.5% distance

David Schlegel, N3AS 2025

Emission Line Galaxies, 1.1<z<1.6, 0.7% distance

David Schlegel, N3AS 2025

QSOs, 0.8<z<2.1, 1.5% distance

 $s^2 \xi_0(s) [h^{-2} \mathrm{Mpc}^2]$ 200 -2080 60

David Schlegel, N3AS 2025

QSO Lyman-alpha forest, z=2.3, 0.65% distance

- Neutral hydrogen in the intergalactic medium leaves a distinctive signature in the spectrum of quasars
- Measure the density along the line of sight to each quasar, producing a 3-d map of neutral gas
- BAO peak 1.1% precision along LOS
- BAO peak 1.3% precision perpendicular

David Schlegel, N3AS 2025

DESI gives a very precise history of the scale of the universe

David Schlegel, N3AS

DESI DR2 results: Aggregate precision on BAO scale 0.3%

David Schlegel, N3AS 2025

Interpretation in context of Lambda-CDM (ACDM) model

- Taking the acoustic scale as uncalibrated, the measurement of the acoustic peak at z=0 would measure H₀r_d
- Measuring at non-zero redshift gives some $\Omega_{\rm m}$ dependence
- Contours are bounded because we measure D_A and H at each redshift

David Schlegel, N3AS 2025

DESI galaxies at different redshifts are compatible and complementary

Interpretation in context of Lambda-CDM (ACDM) model

DESI galaxies at different redshifts are compatible and complementary

DESI BAO gives:

Matter density of the Universe measured to 2.9% $\Omega_m = 0.298 \pm 0.0086$

Hubble constant X sound horizon measured to 0.7%H₀ r_d = (101.54 ± 0.73) [10² km s⁻¹]

David Schlegel, N3AS 2025

Constraints on neutrino mass in flat ΛCDM model Neutrino mass both shifts the position of the last scattering surface (CMB peaks + BAO)

Neutrino mass both shifts the position of the la and suppresses the growth of structure. This analysis consideres only the former...

Constraints on neutrino mass in flat ACDM model

DESI breaks parameter degeneracies in the CMB to further limit the sum of neutrino masses ... but those limits substantially relaxed if Dark Energy is dynamic

0.36

In ACDM model: $\Sigma m_{\nu} < 0.064 \text{ eV} (95\%)$

In w₀w_aCDM: $\Sigma m_{\nu} < 0.163 \text{ eV} (95\%)$

Constraints are model and prior dependent

Constraints on neutrino mass in flat ACDM model

DESI breaks parameter degeneracies in the CMB to further limit the sum of neutrino masses ... but those limits substantially relaxed if Dark Energy is dynamic

In ACDM model: $\Sigma m_{\nu} < 0.064 \text{ eV} (95\%)$

In w₀w_aCDM: $\Sigma m_{\nu} < 0.163 \text{ eV} (95\%)$

Constraints are model and prior dependent

But we know neutrinos have mass!!

DESI in the context of the "Hubble tension controversy"

are still "in tension"

David Schlegel, N3AS 2025

DESI BAO is consistent with previous results, however late-time measures of the Hubble expansion

DESI + BBN constraints on physical baryon density, $\Omega_b h^2$, breaks the H₀ r_d degeneracy:

 $H_0 = (68.51 \pm 0.58) \text{ km s}^{-1} \text{ Mpc}^{-1}$ in 5.4 σ tension with SH0ES

Either the nearby distance scale is wrong by 7% (15% in flux!!) or the sound horizon is actually 7% shorter than we infer!!??

68

DESI results alone consistent with ACDM (non-evolving dark energy)

David Schlegel, N3AS 2025

DESI DR2 within 2- σ of ACDM

DESI results alone consistent with ACDM (non-evolving dark energy)

David Schlegel, N3AS 2025

DESI DR1 + CMB DESI DR2 + CMB

$$w(a) = w_0 + (1 - a) w_a$$

DESI DR2 + CMB prefers evolving dark energy by $3.1-\sigma$ (+0.5 σ compared to DESI DR1)

Dark Energy with a time-varying equation of state w₀w_aCDM appears to fit the data better than ACDM when including supernova data

David Schlegel, N3AS 2025

$$w(a) = w_0 + (1 - a) w_a$$

Combining DESI+CMB+Supernova increased preference for $w_0 > -1$ and $w_a < 0$

DESI+CMB+PantheonPlus: 2.5σ DESI+CMB+Union3: 3.5σ DESI+CMB+DESY5 SN: 3.9σ

Are we seeing first hints for a time-varying w(a) rather than ΛCDM ?

Dark Energy with a time-varying equation of state w₀w_aCDM appears to fit the data better than ACDM when including supernova data

David Schlegel, N3AS 2025

$$w(a) = w_0 + (1 - a) w_a$$

Combining DESI+CMB+Supernova increased preference for $w_0 > -1$ and $w_a < 0$

DESI+CMB+PantheonPlus: 2.8σ DESI+CMB+Union3: 3.8σ DESI+CMB+DESY5 SN: 4.2σ

Are we seeing first hints for a time-varying w(a) rather than ΛCDM ?

Dark Energy with a time-varying equation of state w₀w_aCDM still preferred when using low-redshift probes otherthan supernovae

David Schlegel, N3AS 2025

$$w(a) = w_0 + (1 - a) w_a$$

Replacing CMB with DESY3 3x2pt (weak lensing + galaxy clustering)

DESI + DESY3 (3x2pt) ==> 2.2σ DESI + DESY3 (3x2pt) + DESY5 ==> 3.3σ

Are we seeing first hints for a time-varying w(a) rather than ΛCDM ?

Evolving dark energy

0.05 mag shift

David Schlegel, N3AS 2025

The best-fit LCDM model in DESI+CMB doesn't match the trend in the SNe — would need an

Evolving dark energy

A model of a constant w doesn't help...

Evolving dark energy

...But a model with w_0, w_a is able to bend to steer through the tensions...

Apparent weakening of dark energy today when combining DESI + CMB + supernovae

Deceleration parameter

77

Weakening dark energy today

Ask the theorists what this means... they're writing ~3 papers/day...

DESI has released the most precise BAO measurements DESI in mild tension with Planck (2.3 σ) and SN (~2 σ) when interpreted in Λ CDM

Evidence for evolving dark energy (increased by 0.3 since DESI DR1) 3.1σ (DESI+CMB) $2.8\sigma - 4.2\sigma$ (DESI+CMB+SN)

Tightest bound on Σm_v Growing tension with neutrino oscillations in ΛCDM

Tension reduced if evolving dark energy

Eagerly awaiting more data !!

Conclusions?

