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1 Background

1.1 Primordial Non-Gaussianity

The measurement of primordial non-Gaussianity (PNG) is one of the key targets for up-
coming cosmological surveys as detecting it would provide invaluable information about the
physics of the early universe. Cosmic inflation is the leading theory for the rapid exponential
expansion of the cosmos in its first tiny fraction of a second, generating nearly Gaussian
fluctuations in the matter density field that grew through gravitational instability into the
Large-Scale Structure (LSS) that we now observe [1]. Deviations from Gaussianity in the
primordial matter density field are dependent on the potential of the inflaton field [2], which
can be parameterized and measured both in the statistical distribution of fluctuations in
the Cosmic Microwave Background (CMB) and in the galaxy density field. While the CMB
has provided the most stringent constraints so far [3], its ability to further improve is fun-
damentally limited by cosmic variance (statistical uncertainty stemming from the reality
that we can only observe a single realization of possible universes). Galaxy survey methods
of probing PNG include the bispectrum, which is the Fourier-space three-point correlation
function of the galaxy density field, as well as the scale-dependent galaxy bias that PNG
induces in the clustering of galaxies. The latter can be parameterized via the parameter
f

loc
NL, which quantifies the amplitude of local-type non-Gaussianity. In the presence of PNG,

the linear galaxy bias b1(z), which across redshift space linearly relates the observed galaxy
overdensity to the underlying dark matter overdensity that drives the growth of structure,
acquires a scale-dependent correction !b(k, z) [4] 1:

!b(k, z) = 3(b1(z) → 1)f loc
NL”mH

2
0 ωc

D(z)k2Tω(k) (1)

Here the quantity ”m is the present-day matter density fraction, H0 is the Hubble con-
stant, and ωc ↑ 1.686 is the critical overdensity for spherical collapse. The function D(z) is
the linear growth factor, which encodes the redshift evolution of density perturbations, and
the matter transfer function Tω(k) accounts for the growth of the matter density perturba-
tions through epochs of respective radiation and matter domination. For the purposes of
computing Eq. 1, we make the approximation Tω(k) = 1 across all k in our analysis, which
is a great approximation at low k where the bias correction is most prominent.

This !b(k, z) correction introduces a distinct k
→2 dependence at large scales (small k),

making large-scale measurements particularly sensitive to f
loc
NL. The signal is strongest at

high redshift where D(z) is small and b1(z) is larger, enhancing the PNG signature in wide,
deep galaxy surveys.

Simplest models (single-field, slow-roll inflation) predict |f
loc
NL| < 1. Achieving ε(f loc

NL) ↓

O(1) will enable di#erentiation between current prospective models of inflation [6], including
the number of fields and their interactions [7]. The SPHEREx satellite survey [8], which
recently launched in March 2025, has the explicit purpose of measuring f

loc
NL through the

construction of maps of LSS over 75% of the sky and at low redshift. Forecasts for ε(f loc
NL)

from SPHEREx use the combined 3D power spectrum and bispectrum and predict su$cient
constraints for detecting PNG. The modeling choices are arguably optimistic (e.g. assuming
perfectly Gaussian photo-z uncertainties for each galaxy, and minimal impact from variations
in the galaxy selection function, i.e. LSS systematics, which are some of the most significant
systematics for f

loc
NL). Detecting PNG with a 3D survey using the bispectrum is a primary

1In reality there is a bω term in this equation as well [5]. We assume for the current analysis that bω = 1,
or alternatively one can interpret our results for f loc

NL to actually be for the parameter combination f loc
NLbω.

1



science goal of SPHEREx. In our work we instead do a tomographic study of a SPHEREx-
like experiment to forecast constraints on f

loc
NL through the impacts of the scale-dependent

galaxy bias on the angular power spectrum.

1.2 Galaxy Clustering & the Angular Power Spectrum

In wide-area surveys, we observe galaxies projected onto the celestial sphere, often with
redshift estimates that are too imprecise to reconstruct the full three-dimensional density
field. Instead, we work with the angular power spectrum, denoted Cε, which quantifies the
statistical correlations of galaxy number counts across the sky at di#erent angular scales.

The observed fluctuation in the number density of galaxies (that traces the underlying
dark matter density) in a direction n̂ on the sky can be expanded in spherical harmonics:

ωg(n̂) =
↑∑

ε=2

ε∑

m=→ε

aεmYεm(n̂). (2)

The angular power spectrum is then defined as the variance of the harmonic coe$cients: for
two tracers denoted by A and B (for autocorrelations, A = B) [9]

↔a
A
εma

B↓
ε→m→↗ = C

AB
ε ωεε→ωmm→ . (3)

Similarly to how wavenumber k corresponds to variations on characteristic scales, ϑ relates
to angular scales of ϖ ↑

180↑

ε , and Cε encodes the strength of fluctuations at that scale.
To connect these observables to the underlying matter distribution, we integrate over

wavenumber k, with each mode weighed by the primordial power spectrum and transfer
functions that encode how 3D fluctuations are projected onto the sky: [9]

C
AB
ε = 4ϱ

∫ ↑

0

dk

k
P!(k)!A

ε (k)!B
ε (k), (4)

where P!(k) is the dimensionless power spectrum of primordial curvature perturbations
[10] and !A

ε (k) & !B
ε (k) are number count transfer functions for each respective tracer,

which include contributions [11] from galaxy density (which is proportional to dark matter
density by the linear galaxy bias, and incorporates the redshift distribution of galaxies),
from systematic redshift-space distortions (RSDs) [12, 13] that flatten the shape of mass
overdensities due to systematic infall toward the center and extend the shape in the radial
direction due to the peculiar velocities of galaxies bound in galaxy clusters, and finally
a magnification bias contribution that accounts for the e#ect of gravitational lensing on
observed galaxy counts, which can increase the number of detected galaxies by brightening
ones that were previously too faint to see or decrease the number by stretching the sky and
spreading out their apparent density [14]. This e#ect over redshift is incorporated by the
function s(z) that is baked into the transfer function, which formally is dependent on the
faint-end slope of the luminosity function [15].

In tomographic analyses, the galaxy sample is divided into redshift bins, with each bin
treated as a separate tracer. In this work, we consider only the angular auto-power spectra
within each bin when forecasting constraints on f

loc
NL; cross-power spectra between bins enter

only through the covariance matrix.
Primordial non-Gaussianity a#ects the large-scale clustering of galaxies through its im-

pact on the bias, as described earlier. This imprint manifests in the angular power spectrum
as an enhancement of power at low multipoles (large angular scales), as can be seen in Fig-
ure 1. This is particularly impactful in auto-power spectra of high-redshift, high-bias galaxy
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populations. Accurately modeling and extracting this signal requires careful treatment of
survey systematics and of the redshift distribution.

Figure 1: Imprint of f
loc
NL on the Angular Power Spectrum

2 Methods

2.1 SPHEREx-Like Experiment

We design a SPHEREx-like galaxy clustering survey using the Core Cosmology Library
(CCL) [9] and public access SPHEREx statistical data [16], which provide simulated galaxy
number densities and linear galaxy bias values for a specific redshift binning scheme. The
galaxy sample is divided into five subsamples based on photometric redshift accuracy [8],
each labeled by its maximum redshift uncertainty ε̃z ↘ ε(z)/(1 + z). The five subsamples
correspond to ε̃z = {0.003, 0.01, 0.03, 0.1, 0.2}. For each subsample we perform a cubic
interpolation of its simulated bias as can be seen in Figure 2, and fit its galaxy number
counts to

N(z) = A
z

d→1

z
d
0

exp
{
[→(z/z0)ϑ

}
], (5)

where we fit for A, d, z0, and ς.
The SPHEREx simulated galaxy number densities are given in units of [h/Mpc]3. In order

to convert into units of [galaxies/ster] for fitting to a functional N(z) form, we first map the bin
edges in redshift to comoving radial distance in units [Mpc] and calculate the volume of the
shell defined by that bin. If a and b are the radial bin edges in comoving radial coordinates:

N(z)
[
ster→1

]
= h

3 (b3
→ a

3)
3 ≃ N(z)

[
h

3

Mpc3

]

(6)

This requires assuming a specific cosmology but the resulting number densities are suf-
ficiently insensitive to variations in cosmology for the purposes of being fit to a parent
distribution.

With functions for galaxy count and bias in redshift for each subsample, we are able to
vary the number and size of redshift bins. We incorporate redshift uncertainty in the binning
by convolving over the bin slices of the galaxy count parent distributions with a Gaussian
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Figure 2: Interpolated bias for all five subsamples. The dashed line indicates the maximum
redshift bin edge we use.

Figure 3: Parametrized Galaxy Number Counts

filter of standard deviation ε̃z(1 + z
↓), where z

↓ is the mean redshift of the bin. We then
perform a cosine window apodization at low z to ensure that the galaxy number counts go
to zero at z = 0, and additionally perform an apodization at high redshift for the highest-
uncertainty subsample because the wide convolution Gaussian bloats the distribution far
beyond the parent distribution.

We use CCL to create galaxy number count tracers from the bins (with the scale-
dependent bias included), cross-correlate the tracers to get angular power spectra, and then
forecast constraining power on f

loc
NL through the Fisher matrix formalism.

We set kmax = 0.2h as we are in the quasi-linear regime and can only model down to
certain scales. This choice does not a#ect constraints on f

loc
NL much, as constraining power

is concentrated at low k. We convert from kmax to ϑ
(i)
max for the ith redshift bin by the

relation ϑ
(i)
max ↑ k ⇐ φ(z(i)

↓ ) where φ(z(i)
↓ ) is the co-moving radial distance evaluated at the
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Figure 4: Galaxy counts times bias, showing how closely the fitted and interpolated values
match the simulated data provided by SPHEREx [17]

Figure 5: Final redshift bins (after convolution, colored) and linear galaxy bias (black dashed)
for each subsample of SPHEREx galaxies.

mean redshift of the ith bin. For each bin we evaluate Cε from ϑ = 3 to ϑ
(i)
max. We bin in ϑ

with !ϑ = 2 from ϑ = 2 to 30 and !ϑ = 20 from ϑ = 30 to ϑ
(i)
max.

CCL allows RSD and magnification bias additions to its tracers. We incorporate these
e#ects, picking a fiducial constant s(z) = 0.6 which we will vary and marginalize over
in our analysis. With magnification incorporated, we find that the limber approximation
implemented in CCL fails even on small angular scales, and so we rely fully on the FKEM
non-limber integration method [18] across all ϑ.
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2.2 Forecasting Constraints with Fisher Formalism

The Fisher formalism is an e$cient way of estimating model parameter uncertainties. By
assuming the likelihood distribution L in the model parameters pi is a multivariate Gaussian
about its peak, one can calculate the Fisher information matrix [19]:

Fij =
〈

→
↼

2 ln L

↼pi↼pj

〉

(7)

The matrix measures how sharply the likelihood function is curved about its (assumed)
maximum point. A steeper curvature means the parameters can be estimated more precisely,
indicating that the data contains more information about the cosmological parameters. For
measurements of the angular power spectrum, the Fisher matrix can instead be expressed
as

Fij =
∑

ε

↼C
↼pi

Cov→1 ↼C
↼pj

(8)

Here C is a vector of angular autopower spectra for each pair of redshift bins evaluated at ϑ,
and Cov→1 is the inverse covariance matrix between angular power spectra taking Gaussian
covariance on the Cεs, and whose matrix element corresponding to bins A and B is given by
[20]

Cov
[
C

AA
ε , Cε

BB
]

= 2
(2ϑ + 1)fsky!ϑ

(
C̃

AB
ε

)2
. (9)

fsky is the fraction of the sky covered by the experiment (which for SPHEREx is 0.75),
!ϑ is the width of the ϑ bin, and the auto power spectra (when A = B) includes shot
noise contributions 1/n̄(i), where n̄

(i) is the angular number density of galaxies (with units of
[ster

→1]) in redshift bin i:
C̃

AB
ε = C

AB
ε + ωAB

n̄(i) . (10)

pi runs over the cosmological parameters
[
”c, ”c, h, ε8, ns, w0, wa, f

loc
NL

]
. We additionally in-

corporate uncertainty in the linear galaxy bias with multiplicative bias parameters bz for
each bin, uncertainty in photometric redshift systematics with parameters shiftz that shift
redshift bins translationally as well as parameters stretchz that stretch/squeeze the redshift
bin as is done in [21], and lastly uncertainty in the magnification bias s(z) with parameters
sz for each bin, to which we add a +/ → 0.02 Gaussian prior [22]. We numerically evaluate
the derivatives of Cε by generating power spectra with small perturbations in the parameters
around their fiducial values. Fiducial parameter values and step sizes for use in calculating
the numerical derivatives are given in Table 1. With this formalism we are easily able to
combine constraints from the di#erent subsamples by adding their respective Fisher matrices
after marginalizing over nuisance parameters.

The resulting Fisher matrix yields the best possible constraints on model parameters
given a set of data, as calculated by the Cramer-Rao inequality which gives the lower bound
for error on a parameter:

ε(pi) ⇒







(F →1)ii (marginalized)

1/
⇑

Fii (unmarginalized)
(11)

Marginalized constraints account for correlations between parameters by letting them
communicate through the matrix inverse, and are therefore more conservative and realistic
than unmarginalized ones, which assume all other parameters are known perfectly [23].
Henceforth, all reported parameter errors are assumed to be marginalized over the rest of
the parameters unless otherwise specified.
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Parameter (pi) Fiducial Value Step Size (!pi)
”c 0.25 ±1%
”b 0.05 ±1%
h 0.67 ±1%
ε8 0.81 ±1%
ns 0.96 ±1%
w0 -1.0 ±0.1
wa 0 ±0.1
f

loc
NL 0 ±1
bz 1 ±0.05

shiftz 0 ±0.01
stretchz 1 ±0.05

sz 0.6 ±0.02

Table 1: Fiducial values and step sizes for cosmological and nuisance parameters.

3 Results
With the binning architecture and Fisher matrix formalism established in the previous sec-
tion, we now examine how di#erent choices of redshift binning and subsample configurations
a#ect constraints on f

loc
NL. We begin by evaluating the constraining power of individual bins

and subsamples, then explore the e#ects of binning choices more broadly, and finally perform
some robustness tests to see what modeling assumptions are most impactful.

3.1 Constraints Per Bin

We begin by examining how constraining power on f
loc
NL varies across redshift and subsample.

Picking the same bin edges that SPHEREx used in their simulations [16], we investigate the
amount of unmarginalized constraining power per redshift bin and per photometric-redshift-
accuracy subsample (defined by maximum values of ε̃z). Figure 6 shows the result, making
it clear that constraints are most stringent at high redshift and thus at high uncertainty
subsamples that go deeper in redshift. At the highest redshifts, uncertainties increase signif-
icantly in several subsamples due to large shot noise from the low number density of galaxies
in these bins. The ε̃z = 0.01 subsample retains good constraining power even at high red-
shift despite being a low-uncertainty subsample. This apparent strength is partly a result
of how the parent distribution for that subsample was fitted; this e#ect is mitigated when
marginalizing over nuisance parameters that a#ect bin shape and positioning.

However, bins in a given subsample do not independently contribute to a subsample’s
constraining power, due to o#-diagonal terms in the covariance matrix in equation 8 that
come from cross-power between bins. Therefore we cannot simply add the constraints on
f

loc
NL from each bin together and must instead consider constraints from an entire subsample.

One way to still examine constraining power per bin on f
loc
NL while accounting for correlated

Cεs (and marginalization over all other parameters) is to see how constraints change when
removing that bin completely from the subsample. The results of this analysis are shown in
figure 7 and are visualized with and without normalization to the full subsample’s constraint
with no bins removed. The normalized plot most clearly shows which bins are most important
in each subsample. High-redshift bins still provide the strongest constraints as is expected,
while the bins that contain almost no power at all are either at very low redshift where the
PNG signal is weak, or at very high redshift in low-uncertainty subsamples where shot noise
dominates, or for certain bins in the highest-uncertainty subsample where the bins are so
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Figure 6: Left: Unmarginalized constraints on f
loc
NL from each bin in each subsample, taken

individually. Note that bins are not all independent. Right: Auto power spectra and the
imprint of f

loc
NL for a low and a high redshift bin, and for a low and high uncertainty subsample.

overlapped that the information becomes saturated.

3.2 Optimal Binning

The choice of redshift binning plays a crucial role in determining the constraining power of a
tomographic analysis. Binning too coarsely risks diluting cosmological signals by averaging
over redshift evolution, while overly fine binning increases shot noise and makes the analysis
more sensitive to systematic e#ects. An optimal binning scheme must strike a balance
between maximizing sensitivity to scale-dependent bias and maintaining robustness against
systematics.

To explore this tradeo#, we vary the number of redshift bins for each photometric-
accuracy subsample and assess the resulting constraints on f

loc
NL. We also explore the impact

of non-uniform binning schemes by introducing a skew factor, defining redshift bin edges
that modify the width of each bin linearly with redshift:

!zi = !zbase [1 + (skew → 1)zi] , (12)

where !zbase is the average bin width in the unskewed (evenly spaced) case, and zi is the
lower edge of the i-th bin. The bin edges are then rescaled to exactly span the desired
redshift interval. When skew = 1, bins are evenly spaced in redshift; skew > 1 stretches bin
widths toward higher redshift (wider bins at high z), while skew < 1 compresses bins toward
high redshift (wider bins at low z). This allows us to test whether concentrating redshift
resolution in specific ranges improves constraints over uniformly spaced binning.

Figure 8 summarizes the dependence of marginalized uncertainties in f
loc
NL, combining

constraints from all subsamples, on both the number of evenly spaced bins and the skew
parameter. The skew variation analysis is performed at a fixed bin count of six. We find that
beyond two to three bins, increasing the number of bins yields only modest improvements in
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Figure 7: Marginalized uncertainties on f
loc
NL when individual redshift bins are removed from

their respective subsamples (columns). Each entry corresponds to the uncertainty obtained
after excluding the bin centered at the specified redshift in the specified subsample. The left
panel shows the raw marginalized uncertainties, indicating which bins are most critical to
constraining power. The right panel shows the same values normalized by the uncertainty
from the full subsample (with all bins included), highlighting the relative importance of each
bin within its subsample.

constraints, and changes in the skew factor have some e#ect but make little overall di#erence
unless extreme. These results suggest that when subsamples are combined, the precise choices
in binning configuration have limited impact on the overall constraining power, which are
primarily driven by sample depth in redshift. Therefore, maintaining control over systematics
(see e.g. [24]) should be prioritized over fine-tuning bin placement or count.

Figure 8: Marginalized f
loc
NL constraints combining all subsamples, as a function of binning

choices. Left: Constraints versus the number of evenly spaced redshift bins. Beyond two
to three bins, improvements quickly plateau as information saturates. Right: Constraints
versus the skew factor at a fixed bin count of six. Skew = 1 corresponds to even binning,
while skew > 1 and < 1 shift resolution toward high and low redshift, respectively. The
weak dependence on binning configuration indicates that maximizing redshift depth and
controlling systematics are more impactful than fine-tuning bin structure.

While these results demonstrate that binning configuration has limited impact when
subsamples are combined, we next determine optimal binning strategies within each individ-
ual subsample. Because the five photometric-accuracy subsamples reach di#erent redshift
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depths, we assign a separate maximum bin edge for each: {1.5, 2.6, 2.8, 2.8, 3.4} from low-
est to highest redshift uncertainty. For each subsample, we first vary the number of evenly
spaced bins up to its redshift limit and identify the smallest number of bins that yields
su$cient constraints on f

loc
NL without saturating information with too many bins. With the

bin count picked for each subsample and fixed, we then vary the skew parameter and pick
optimal values. This procedure balances computational e$ciency with robustness and serves
as the basis for our final binning choices used in the combined forecasts. The results of this
optimization procedure are shown in Figure 9 and the optimal redshift bins picked from this
analysis are shown in Figure 5. We find that 4-6 bins are su$cient bin numbers and that
near-even spacing in the bins is preferred.

Figure 9: Optimization of binning strategy for each subsample. We use a di#erent maximum
redshift for each subsample: {1.5, 2.6, 2.8, 2.8, 3.4} for ε̃z = {0.003, 0.01, 0.03, 0.1, 0.2},
respectively. The dashed line denotes the Planck 2018 constraint on f

loc
NL for reference [3].

Black crosses mark the chosen bin count and skew for each subsample, selected to balance
performance and robustness. Left: Marginalized constraints on f

loc
NL versus the number of

evenly spaced redshift bins. The chosen number of bins for each subsample are marked.
Right: Constraints versus skew parameter at fixed bin count (selected per subsample based
on the left panel).

Subsample ε̃z # Bins
Skew
Factor ω(f loc

NL)
0.003 6 1.0 28.4
0.01 6 0.9 2.31
0.03 6 0.9 3.22
0.1 4 1.1 2.56
0.2 4 0.9 1.25

Combined – – 0.823

Table 2: Marginalized constraints on f
loc
NL from chosen optimal binning for each individual

subsample and then with all subsamples combined.

Table 2 shows the resulting constraints on f
loc
NL from the chosen redshift binning, achieving

a projected uncertainty of ε(f loc
NL) = 0.823 when combining all subsamples. This result is

close to the Fisher forecast projected constraints from the 3D power spectrum done in [8]
using di#erent redshift binning and di#erent assumptions (e.g. uncorrelated power spectra
between bins).

To better understand how constraints on f
loc
NL arise from the Fisher formalism, we examine

the correlation matrices between all model parameters, including both cosmological and
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nuisance parameters. These are derived by normalizing the inverse Fisher matrix and thus
reflect the degree to which uncertainties in di#erent parameters are degenerate with one
another.

In particular, correlations with f
loc
NL are important because they directly impact the

marginalized uncertainty: strong degeneracies lead to degraded constraints, while weak or no
correlation implies that the constraint is more robust and driven by the unique features of the
f

loc
NL signal. We find that f

loc
NL is generally weakly correlated with other parameters — both

cosmological and nuisance — indicating that the PNG signal extracted from scale-dependent
galaxy bias is relatively distinct and well-isolated in the parameter space.

The full correlation matrices for our chosen binnings are shown in Figure 10 and then
zoomed in on the ε̃z = 0.2 subsample in Figure 11. These plots provide insight into which
parameters are most degenerate and help validate the stability of the resulting marginalized
forecasts.

Figure 10: Fisher matrix correlation matrices for each subsample and the combined case
(bottom right). Each matrix shows the normalized correlations between model parameters
after applying the optimized binning and skew configuration for that subsample. The com-
bined correlation matrix includes only the cosmological parameters, after marginalizing over
all nuisance parameters.

3.3 Robustness Tests

To assess the sensitivity of our forecasted constraint on f
loc
NL to modeling choices, we perform

a set of robustness tests which are designed to evaluate what assumptions are the most
impactful.

In the left panel of Figure 12, we test the impact of various components of our model.
Starting from the full model, we evaluate the change in ε(f loc

NL) when fixing specific nuisance
parameters instead of marginalizing over them. We find that modeling uncertainty on the
bias has the most impact on results, whereas nuisance parameters that model uncertainty on
s(z) has very little e#ect. As expected, the bin shape parameters also have some impact but
not as much as the bias parameters which directly a#ect the PNG signal through equation
1.

11



Figure 11: Correlation matrix for the ε̃z = 0.2 subsample

We also check the constraint on f
loc
NL without including contributions from the ε̃z =

0.2 subsample in case we can’t trust such high redshift uncertainties, which could lead to
systematics and dangerous dependence on the assumption of Gaussian error which drives
constraints at the tails (which for the high-z tail drives constraining power). We find in this
case that ε(f loc

NL) = 1.27, still beating down the uncertainty to the O(1) level.
In the right panel, we show how the f

loc
NL constraint depends on the minimum multipole

ϑmin included in the Fisher calculation. Since the scale-dependent bias signature from f
loc
NL is

strongest on large angular scales, excluding low-ϑ modes quickly degrades the constraint. For
example, increasing ϑmin from 2 to 10 more than doubles the uncertainty. This underscores
the importance of robust large-scale systematics control and accurate modeling at low ϑ,
where cosmic variance, observational challenges, and potentially unmodeled contributions
are greatest.

Figure 12: Left: How constraints on f
loc
NL change when fixing various model components

(that we usually vary with parameters and marginalize over in the Fisher matrix), as well as
the constraint without including the largest uncertainty subsample. Right: How constraints
on f

loc
NL depend on the lowest value of ϑ used in calculating angular power spectra.

Together, these tests show that our forecasted constraint on f
loc
NL is relatively robust to rea-

sonable assumptions about nuisance parameters, and highlight the critical role of the largest-
scale modes and deep redshift coverage in driving sensitivity to primordial non-Gaussianity.
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4 Discussion
In this work, we have forecasted constraints on f

loc
NL from a SPHEREx-like tomographic galaxy

clustering survey, focusing on the imprint of primordial non-Gaussianity in the angular power
spectrum via the scale-dependent galaxy bias. By incorporating Gaussian photometric red-
shift uncertainties, nuisance parameter modeling, and Fisher forecasting techniques, we have
estimated the constraining power of di#erent subsamples and identified binning strategies
that balance precision and robustness.

We find that if angular systematics can be controlled, a tomographic analysis of SPHEREx
may be able to constrain f

loc
NL down to the O(1) level, which is critical for distinguishing

between single-field and multi-field inflationary models [6]. Notably, f
loc
NL is only weakly cor-

related with other cosmological and nuisance parameters, reinforcing the idea that it can be
cleanly extracted from large-scale clustering measurements.

Our results also show that while the choice of redshift binning does have some e#ect on
the final constraints, the di#erences are modest. This suggests that we should favor binning
schemes that minimize sensitivity to systematic errors and reduce dependence on uncertain
modeling assumptions. Much of the constraining power comes from high-redshift bins, where
galaxy bias and the bin tails driven by the assumption of Gaussian redshift error dominate
— both of which introduce theoretical uncertainties that will need to be better quantified in
real data analyses [24].

In addition, our forecasts do not explicitly model selection function errors — mismatches
between the true galaxy distribution and the assumed survey response, such as spatial vari-
ations in detection e$ciency or contamination from stars. These unmodeled e#ects can bias
clustering measurements and will be an important target for mitigation in future observa-
tional analyses.

In conclusion, SPHEREx has the potential to significantly advance our understanding of
the early universe, with a tomographic analysis alone pushing us close to the constraining
power needed to detect PNG, and with further gains available from the bispectrum. However,
achieving this will require meticulous control of systematics as well as careful modeling of
redshift uncertainties and bias. This analysis helps indicate where we should focus our e#orts
to obtain clean samples with maximal leverage on f

loc
NL.
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