

Beta-Decay Effects on r-Process **Nucleosynthesis in Neutron Star Mergers**

Motivation

The rapid neutron-capture process (r-process) is responsible for creating nearly half of the heavy elements found in the universe. The precise role played by nuclear physics inputs—such as β -decay rates—in shaping the final abundance pattern still remains uncertain. This study aims to investigate the impact of modified β -decay rates on r-process nucleosynthesis during a neutron star merger (NSM) event.

Theory

- The r-process (rapid neutron capture) occurs in high neutron density and temperature.
- Nuclei rapidly absorb neutrons and undergo β -decay to stabilize.
- β-decay rates control how quickly isotopes move toward stability directly affecting element formation.
- Simulations rely on theoretical β -decay models due to lack of experimental data for neutron-rich nuclei.

Contact:

Samin Khan saminsamin@berkeley.edu

David Calvert djcalve2@berkeley.edu

under modified decay rates.

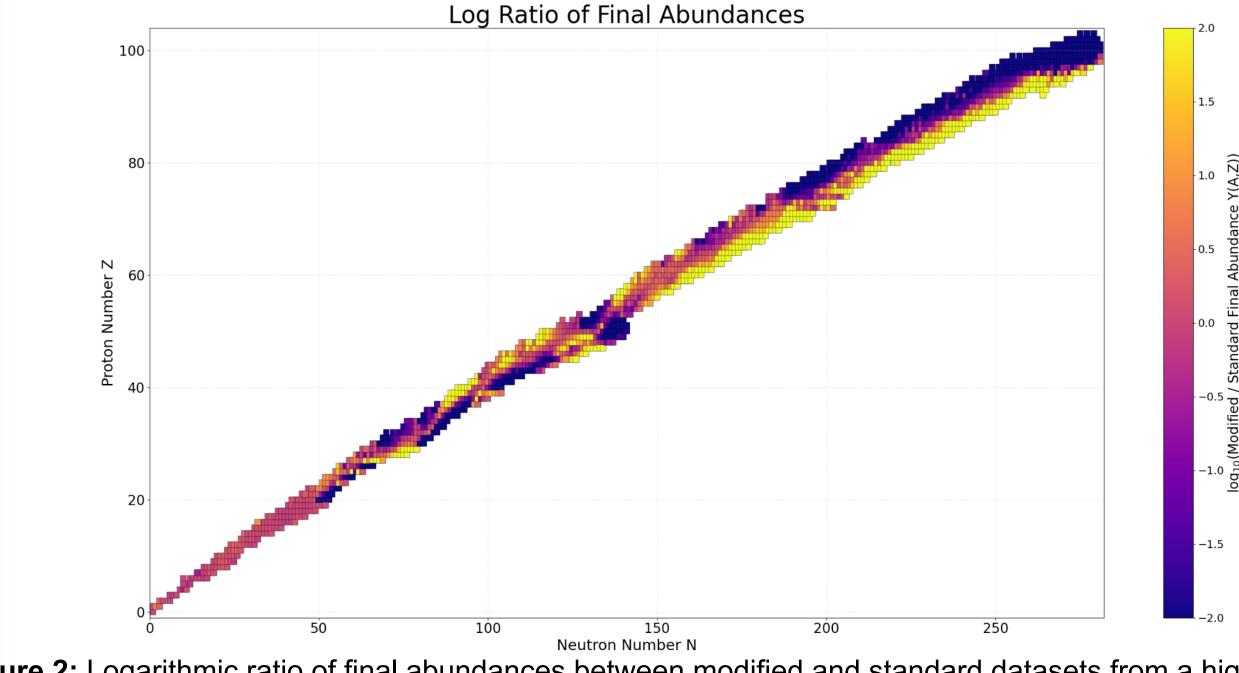


Figure 2: Logarithmic ratio of final abundances between modified and standard datasets from a high magne field neutron star merger simulation (NES model). Yellow regions reflect significantly more production under modified β -decay rates based on the methodology of Lund et al. (2023).

References:

Samin Khan¹ and David Calvert²

¹Department of Physics and Astronomy, University of California, Berkeley ²Department of Physics, North Carolina State University

Methods and Data

- Used PRISM to simulate 30 tracer particles from a high magnetic field neutron star merger (NES model).
 - Ran two sets of simulations:
 - One with standard Möller et al. (2003) β -decay rates
 - One with modified β -decay rates (reduced half-lives in neutron-rich region \circ Analyzed final abundances and β -decay rates
 - Compared results by averaging over all tracers and plotting differences Y(A), decay rates, and isotope distributions.

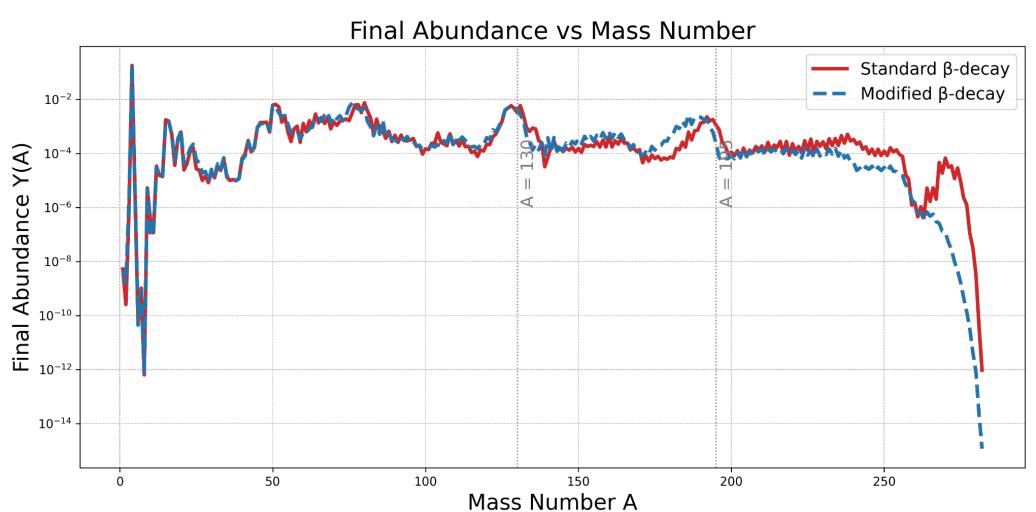


Figure 1: Final abundances (Y(A)) vs mass number A, averaged over 30 tracers. Solid line shows standard β-decay; dashed line shows modified rates. Key features such as the rare-earth peak and third peak are shift

Lund, K., et al. "Impact of nuclear data on r-process nucleosynthesis." *Astrophysical Journal*, 2023. Möller, P., et al. "Nuclear Ground-State Masses and Deformations." At. Data Nucl. Data Tables, 2003. Eichler, M., et al. "Impact of β -decay rates on r-process nucleosynthesis." Astrophysical Journal, 2015. Vassh, N., et al. "Using nuclear theory for r-process simulations." Journal of Physics G, 2019.

NSF Physics Frontier Award number #2020275

	Results
ons)	 Modified β-decay rates produced notable differences in the heavy-mass region (A > 200).
in	 The final abundance peak near A ≈ 195 is broadened and shifted.
	 Logarithmic comparison of β-decay rates (Z, N) shows a systematic speed-up in decay times across neutron-rich nuclei.
	• Modified rates increase the speed of matter flow back to stability, shortening the freeze-out period.
fted	
	Conclusion
	 β-decay physics has a measurable impact on r-process abundance patterns.
	• This effect is most pronounced in heavy nuclei beyond the second r-process peak.
etic	• Future models should explore broader nuclear datasets and uncertainty quantification.