Probing neutrino properties

via Neutrinoless Double Beta Decay

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Neutrinos in Physics and Astrophysics: celebrating the contributions of Baha Balantekin and George Fuller

J.F. Wilkerson January 17, 2025 Berkeley, CA

Neutrino Physics from the 1980s to the present

- Key neutrino properties
 - mixing angles and ordering
 - mass?
 - Dirac Majorana nature?
 - additional neutrino flavors (Sterile)?
 - magnetic moment?
 - interactions and conservation laws?
 (via the weak force or new forces)

Impacts and Implications

- fundamental interactions and symmetries
- nuclear physics
- astrophysics
- cosmology

LOD

Baha's and George's Contributions

2025 Probing

Neutrinoless Double Beta Decay ($0\nu\beta\beta$)

- Matter creation (Lepton number is not conserved)
- The neutrino is its own anti-particle (Majorana particle)
- Provides a mechanism for generating the predominance of matter to antimatter in the cosmos (the matter - antimatter asymmetry).
- Demonstrates a new means for the generation of mass
- Determination of neutrino mass (with caveats)

The highest priority for new experiment construction in U.S. Nuclear Science Advisory Committee's 2023 Long Range Plan for Nuclear Science

The observation of $0v\beta\beta$ would reveal the quantum nature of the neutrino and dramatically revise our foundational understanding of physics and the cosmos

For Neutrinoless Double Beta Decay to Occur

- Neutrino must have non-zero mass
 - "wrong-handed" helicity admixture ~ m_i/E_{v_i} Any process that allows $0\nu\beta\beta$ to occur requires Majorana neutrinos with non-zero mass. Schechter and Valle, 1982

- Matter Creation \Leftrightarrow Lepton number violation
 - No experimental evidence that Lepton number must be conserved (i.e. allowed based on general SM principles, such as electroweak-isospin conservation and renormalizability)

2025 oroperties Probing

Experimental searches for $0\nu\beta\beta$ -decay

Covering IH region requires sensitivities of $0\nu\beta\beta T_{1/2} \sim 10^{27}$ - 10²⁸ years $(2\nu\beta\beta T_{1/2} \sim 10^{19} - 10^{21} \text{ years})$

Observable : rate of decay (half-life)

Ονββ Half-life (years)	~Signal (cnts/ton-year)
1025	500
1026	50
1027	5
1028	0.5
1029	0.05

Jan. 17, 2025 Probing neutrino properties

Constraints on $0\nu\beta\beta$ Decay from measurements

Assuming LNV mechanism is light Majorana neutrino exchange and SM interactions (W)

2015 NSAC Long Range Plan for Nuclear Science

Constraints on $0\nu\beta\beta$ Decay - latest results and NME

- ⁷⁶Ge - LEGEND, Neutrino 2024

- ¹³⁶Xe KamLAND Zen, Neutrino 2024
- ¹³⁰Te : CUORE, Neutrino 2024

NMEs from compilation: https://doi.org/10.1103/

RevModPhys.95.025002.

Jan. 17, 2025 Probing neutrino properties

0vββ Sensitivity & Discovery vs Exposure & Bkg.

- Background-free: Sensitivity rises linearly with exposure
- Quasi-background-free: Less than one background count expected in a 4σ Region of Interest (ROI) for a given exposure
- Background-limited: Sensitivity rises as the square root of exposure

(FWHM: Full Width at Half Maximum; 2.355 σ for a Gaussian peak)

What would a Discovery look like?

- One desires excellent energy resolution: $\sigma/Q_{\beta\beta} = 0.05$ %
- Nearby background is flat and well understood
- Background measured, with no reliance on background modeling

No background peaks anywhere near the energy of interest (also depends on resolution)

Jan. 17, 2025 Probing neutrino properties

Ovββ Decay Discovery Sensitivity

Fundamental Symmetries, Neutrons, and Neutrinos (FSNN): Whitepaper for the 2023 NSAC Long Range Plan Jan. 17, 2025 Probing neutrino properties

J.F. Wilkerson

Techniques to determine v mass

	<image/>		<image/>	<image/>
	v oscillation	Cosmology	Decay kinematics	Ονββ
Observable	$\Delta m_{ij}^2 = m_i^2 - m_j^2$	$\Sigma_v = \sum_i m_i$	$m_{\beta} = \left(\sum_{i} \left U_{ei}^2 \right m_i^2 \right)^{1/2}$	$m_{\beta\beta} = \left \sum_{i} U_{ei}^2 m_i \right $
Present	$\Delta m_{21}^2 = 7.53(18) \times 10^{-5} \text{eV}^2$ $\Delta m_{32}^2 = 2.44(6) \times 10^{-3} \text{eV}^2$	$\Sigma_v < 0.12 \text{ eV}$	$m_{\beta} < 0.45 \text{ eV}$ ($\Sigma_{v} < 1.35 \text{ eV}$)	$m_{\beta\beta} < (0.02-0.3)$ ($\Sigma_v < (0.06-0.9)$ e
Next Gen Sensitivity		$\Sigma_v \sim 0.06 \ eV$ @20	$m_{\beta} \sim 0.2 \text{ eV}$ $(\Sigma_{v} \sim 0.6 \text{ eV})$	$m_{\beta\beta} \sim (0.00603)$ ($\Sigma_v < 0.06 \text{ eV}$)
Model dependences	No mass-scale info. Lower bound on Σ_v if $m_{vlight}=0$ IO: $\Sigma_v \ge 0.10 \text{ eV}$ NO: $\Sigma_v \ge 0.06 \text{ eV}$	 ACDM Fit to 6 + parameters relativistic particles (N_{eff}) are v, 	Energy ConservationFinal State effects	 Majorana v's Unknown δ₁, δ₂ ph L viol. process NME, g_A

$0\nu\beta\beta$ and ν mass

Observable (decay rate) depends on nuclear processes & nature of lepton number violating interaction(s) (η).

- Phase space, G_{0v} is calculable.
- of lepton number violating (LNV) interactions.
- Not sensitive if neutrino is Dirac particle

$$\begin{bmatrix} \mathbf{T}_{1/2}^{0\nu} \end{bmatrix}^{-1} = G_{0\nu} |M_{0\nu}(\eta)|^2 \eta^2$$

$$\downarrow$$

$$\begin{bmatrix} \mathbf{T}_{1/2}^{0\nu} \end{bmatrix}^{-1} = G_{0\nu} |M_{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle}{m_e}^2$$

 Nuclear matrix elements (NME) via theory, also depend on interaction. • Effective neutrino mass, $\langle m_{\beta\beta} \rangle$, depends directly on the assumed form

Jan. 17, 2025 Probing neutrino properties

Ton-scale and beyond $0\nu\beta\beta$ Considerations

- Is there a preferred $0\nu\beta\beta$ isotope?
- No preferred isotope in terms of sensitivity per unit mass within current uncertainties on NME. • What evidence is needed to claim the observation of $0\nu\beta\beta$?
 - Measurement of a peak (or excess) at the correct energy at 3σ .
 - Observation in two different isotopes.
- What exposure is required to cover Inverted Ordering masses?
 - For a nearly ideal, quasi background free experiment ~ 10 t-y.
- What are the critical experimental considerations?
 - Availability of ton quantity of (enriched) isotopes.
 - Reduction of backgrounds (and/or effective discrimination)
 - $2v\beta\beta$ rate (irreducible background) ⁷⁶Ge ¹³⁰Te, ¹³⁶Xe are the best (longest T_{1/2}), but impact depends on resolution.
 - Resolution

2025 neutrino properties Probing

Ton-scale Οvββ Status

- U.S. DOE NP 0vββ Portfolio Review (Summer 2021) - Ready to proceed with: CUPID (¹⁰⁰Mo), LEGEND (⁷⁶Ge), nEXO (¹³⁶Xe)
- N. American European $0v\beta\beta$ Summits (2021, 2023,)
- 2023 A New Era of Discovery, the 2023 Long Range Plan for Nuclear Science Recommendation 2 of 4 — As the highest priority for new experiment construction, we recommend that the United States lead an international consortium that will undertake a neutrinoless double beta decay campaign, featuring the expeditious construction of ton-scale experiments, using different isotopes and complementary techniques.
- 2023 European Astroparticle Physics (APPEC) Mid-Term Update APPEC strongly supports the CUPID and LEGEND 1000 double-beta decay experiments selected in the US-European process and endorses the development of NEXT. APPEC strongly supports fully exploiting the potential of the KATRIN direct neutrino mass measurement and the development of a new generation of experiments beyond KATRIN.
- Mid 2024 DOE ONP pauses planned CD-1 reviews for CUPID, LEGEND, nEXO
- Dec. 2024 DOE ONP will proceed with supporting LEGEND in the near term

Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay

LEGEND-200 - Operating

- 200 kg 76 Ge enriched to > 88%
- BG goal : $< 2.0 \times 10^{-4}$ counts/(keV kg yr)
- Exposure : 1 t-y
- Location : Laboratori Nazionali del Gran Sasso (LNGS), Italy

Mission : "Develop a phased, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years"

- 280 members
- 59 institutions around the world

LEGEND-1000 - Proposed

- 1000 kg 76 Ge enriched to > 90%
- BG goal : $< 1 \times 10^{-5}$ counts/(keV kg yr)
- Exposure : 10 t-y
- Location : Laboratori Nazionali del Gran Sasso (LNGS), Italy

LEGEND-200 Experimental Overview

Ge Detector Unit:

Polyethylene Napthalate (PEN) baseplate

Ge Detector

Low Mass Front-Ends (LMFE) amplifier

Underground electro-formed copper structure

> Inverted detector unit with an ICPC detector

> > Ge Detectors during 1st measurement campaign

Ge Array and LAr instrumentation:

- Inner barrel of fiber shroud for LAr instrumentation
- 12 String locations •
- Outer fiber shroud installed after detectors (not in rendering)

- LAr purification and quality monitoring
- veto

LEGEND Innovations — Background Reduction

LEGEND-200, Neutrino 2024

Ge Event topologies cut

LAr coincidence Cut

| Probing neutrino properties | Jan. 17, 2025

LEGEND-1000 builds on MAJORANA, GERDA, and LEGEND-200 FGENL

MAJORANA DEMONSTRATOR

Vacuum cryostats in a passive graded shield with ultra-clean materials

Best resolution in ROI of all $0\nu\beta\beta$ Expts.

Direct immersion in active LAr shield with outer water shield

Lowest bkg. in ROI of all $0\nu\beta\beta$ Expts.

PRL 130 062501 (2023)

Combined GERDA, MAJORANA, AND LEGEND-200 $T_{1/2} > 1.9 \cdot 10^{26}$ yr (90% C.I.) (Expected Sensitivity : 2.8 • 10²⁶ yr (90% C.I.))

GERDA

LEGEND-200

Started physics measurements March 2023

Excellent resolution Bkg. comparable to GERDA

Neutrino 2024

2025 oroperties neutrino Probing Wilkersor

LEGEND-1000 – Overview

LEGEND-1000 will meet the Discovery Level Goal

- Goal criterion defined by U.S. Nuclear Science Advisory subcommittee: 50% chance of 3-σ discovery at extreme of inverted ordering region.
- What is required for a discovery of $0\nu\beta\beta$ decay at a half-life of 10^{28} years?
 - Need 10 ton-years of data to get a few counts (less than (less than one decay per year per ton of material
 - Need a good signal-to-background ratio to get statistical significance
 - A very low background event rate
 - The best possible energy resolution Animation of simulations contains 100 instances.
- The probability of a background fluctuation at $Q_{\beta\beta}$ that mimics a signal (3 or more counts) is 0.27%.
- When the $0\nu\beta\beta$ peak is included, even at a half-life of 10^{28} yr, one often sees a clustering of events near $Q_{\beta\beta}$. More than 50% of these are a 3σ excess.

LEGEND Going Forward

LEGEND-200:

- Preparing a paper on first physics measurements presented at Neutrinos 2024, will include additional exposure.
- In late May, started maintenance period, removed array from LAr, disassembled, performing "forensic" assays of instrument components.
- Reassembling instrument, will resume measurements in Feb. -March.
- Continue to fabricate additional ICPC detectors, aim is 200 kg of detectors.

LEGEND-1000:

- DOE CD-1 review should occur in CY2025.
- NSF Mid-scale proposal is being converted to a MREFC project in final design phase, possible start in FY2027.
- Infrastructure proposal submitted to BMBF by German colleagues.
- Preparation of space in Hall C at LNGS is underway.

Celebrating Baha and George

- predict observables, make connections
- training the next generation of scientists

explore possibilities within the realm of what is known,

2025 Probing

