

Simulating and Interpreting the Multimessenger Picture of Neutron Star Mergers

Tim Dietrich

University of Potsdam Max Planck Institute for Gravitational Physics

- collapsed core of a massive star

smallest and densest known class of stellar compact objectsStellar ev

- collapsed core of a massive star

smallest and densest known class of stellar compact objectsStellar ev

- collapsed core of a massive star

- smallest and densest known class of stellar compact objects Stellar

- collapsed core of a massive star
- smallest and densest known class of stellar compact objects
- typical size of 12 kilometer and masses between one and two solar masses

... how to study them?

- collapsed core of a massive star
- smallest and densest known class of stellar compact objects
- typical size of 12 kilometer and masses between one and two solar masses

Single Neutron Stars

radio pulsarsthrough X-ray emission

... how to study them?

- collapsed core of a massive star
- smallest and densest known class of stellar compact objects
- typical size of 12 kilometer and masses between one and two solar masses

Binary Neutron Stars

- gravitational-wave sources
- electromagnetic transients
- neutrino sources

Combining different constraints on the EOS from different research fields

Combined Equation of SLX +	Science case:
← → C Q A 0.0.0.5000	
An overview of existing and new nuclear and astrophysical constraints on neutron-rich dense matter	the equation of state of arXiv:2402.04172v1
his tool can be used to combine various constraints on the equation of state (EOS) for dense matter. Select the constraints you are interested in. Clicking on the buttons rovide the figures for either EOS-derived quantities or show how the estimate for the canonical neutron star radius changes. Dependencies are taken into account autom y clicking on the images, you can switch between the M-R curve and the corresponding pressure-density relation. ou can also choose weights for the individual inputs, so when the log-likelihoods are added, the weight will be used as a coefficient. We emphasize that the weights are found statistical interpretation.	below will then give you the combined posterior and atically.
Microscopic Theory	
Microscopic Experiments	Accessible here
Astrophysical Limits on the TOV Mass	
Astrophysical M-R Constraints	
Gravitational-Wave and Multimessenger Constraints	
Prior	
Compare Evolution Compare C	bservables
he Numanji Collaboration G Theoretische Astrophysik stitut für Physik und Astronomie niversität Potsdam arl-Liebknecht-Str. 24/25 4476 Potsdam ermany	
chrome	

Combining different constraints on the EOS from different research fields

Science case: Koehn et al. 2024 arXiv:2402.04172v1

Combining different constraints on the EOS from different research fields

Set

Α

 χEFT

pQCD

NICER

J0030 + 0451

В

Set A

HIC

J0952-0607

qLMXBs

Heavy pulsars Black Widow

 \mathbf{C}

Set B

CREX

PREX-II

²⁰⁸Pb dipole

The Binary Neutron Star Merger Simulation

gravitational wave emission

The Binary Neutron Star Merger Simulation

gravitational wave emission

deformation before merger, ejection of material, heavy element production

The Binary Neutron Star Merger Simulation

gravitational wave emission

deformation before merger, ejection of material, heavy element production

black hole formation

Theoretical Framework:

- well-posedness of PDEs
- advantageous properties

$$\begin{split} \partial_t \chi &= \frac{2}{3} \chi \left(\alpha (\ddot{K} + 2\Theta) - D_i \beta^i \right), \\ \partial_t \ddot{\gamma}_{ij} &= -2\alpha \ddot{A}_{ij} + \beta^k \partial_i \ddot{\gamma}_{ij} + 2\ddot{\gamma}_{ki} (\partial_j) \beta^k - \frac{2}{3} \ddot{\gamma}_{ij} \partial_k \beta^k, \\ \partial_t \ddot{K} &= -D^i D_i \alpha + \alpha \left(\ddot{A}_{ij} \dot{A}^{ij} + \frac{1}{3} (\ddot{K} + 2\Theta)^2 \right) \\ &+ 4\pi \alpha (S + E) + \beta^k \partial_k \ddot{K} + \alpha \kappa_i (1 - \kappa_2) \Theta, \\ \partial_t \ddot{A}_{ij} &= \chi \left(-D_i D_i \alpha + \alpha \left(^{3} R_{ij} - 8\pi S_{ij} \right) \right)^{TT} + \alpha \left((\ddot{K} + 2\Theta) \dot{A}_{ij} - 2 \ddot{A}^{ij} \ddot{A}_{kj} \right) \\ &+ \beta^k \partial_k \ddot{A}_{ij} + 2 \dot{A}_{ki} (\partial_j) \beta^k - \frac{2}{3} \ddot{A}_{ij} \partial_k \beta^k, \\ \partial_t \ddot{\Gamma}^i &= -2 \ddot{A}^{ik} \partial_k \alpha + 2\alpha \left(\ddot{\Gamma}_{ik} \ddot{A}^{il} - \frac{3}{2} \ddot{A}^{ik} \partial_k \ln(\chi) - \frac{1}{3} \ddot{\gamma}^{ik} \partial_k (\ddot{K} + 2\Theta) - 8\pi \ddot{\gamma}^{ik} S_k \right) \\ &+ \ddot{\gamma}^{ik} \partial_k \partial\beta^j + \frac{1}{3} \dot{\gamma}^{ik} \partial_k \partial\beta^j - 2\alpha \kappa_i (\ddot{\Gamma}^i - \Gamma^i) + \beta^k \partial_k \ddot{\Gamma}^i \\ &- \Gamma^k \partial_k \beta^i + \frac{2}{3} \dot{\Gamma}^i \partial_\beta \beta^k, \\ \partial_i \Theta &= \frac{\alpha}{2} \left((^{3)} R - \ddot{A}_{ij} \ddot{A}^{ij} + \frac{2}{3} (\ddot{K} + 2\Theta)^2 \right) - \alpha \left(8\pi E + \kappa_1 (2 + \kappa_2) \Theta \right) \\ &+ \beta^i \partial_i \Theta \end{split}$$

- well-posedness of PDEs
- advantageous properties

$$\begin{split} \partial_{tX} &= \frac{2}{3} \chi \left(\alpha (\tilde{K} + 2\Theta) - D_{i} \beta^{i} \right), \\ \partial_{t} \tilde{\gamma}_{ij} &= -2\alpha \tilde{A}_{ij} + \beta^{2} \partial_{k} \tilde{\gamma}_{ij} + 2\tilde{\gamma}_{ki} (\partial_{j}) \beta^{k} - \frac{2}{3} \tilde{\gamma}_{ij} \partial_{k} \beta^{k}, \\ \partial_{t} \tilde{K} &= -D^{i} D_{i} \alpha + \alpha \left(\tilde{A}_{ij} \tilde{A}^{ij} + \frac{1}{3} (\tilde{K} + 2\Theta)^{2} \right) \\ &+ 4\pi \alpha (S + E) + \beta^{k} \partial_{k} \tilde{K} + \alpha \kappa_{i} (1 - \kappa_{2}) \Theta, \\ &+ \beta^{k} \partial_{k} \tilde{A}_{ij} + 2 \tilde{A}_{ki} (\partial_{j}) \beta^{k} - \frac{2}{3} \tilde{A}_{ij} \partial_{k} \beta^{k}, \\ \partial_{t} \tilde{A}_{ij} &= \chi \left(-D_{i} D_{i} \alpha + \alpha \left(^{3} R_{ij} - 8\pi S_{ij} \right) \right)^{TF} + \alpha \left((\tilde{K} + 2\Theta) \tilde{A}_{ij} - 2 \tilde{A}^{k}_{j} \tilde{A}_{kj} \right) \\ &+ \beta^{k} \partial_{k} \tilde{A}_{ij} + 2 \tilde{A}_{ki} (\partial_{j}) \beta^{k} - \frac{2}{3} \tilde{A}_{ij} \partial_{k} \beta^{k}, \\ \partial_{t} \tilde{I}^{i} &= -2 \tilde{A}^{ik} \partial_{k} \alpha + 2\alpha \left(\tilde{I}_{ki} \tilde{A}^{ki} - \frac{3}{2} \tilde{A}^{ki} \partial_{k} \ln(\chi) - \frac{1}{3} \gamma^{ik} \partial_{k} (\tilde{K} + 2\Theta) - 8\pi \tilde{\gamma}^{ik} S_{k} \right) \\ &+ \tilde{\gamma}^{ki} \partial_{k} \partial_{i} \beta^{i} + \frac{1}{3} \gamma^{ik} \partial_{k} \beta^{j} - 2\alpha \kappa_{i} (\tilde{\Gamma}^{i} - \tilde{\Gamma}^{i}) + \beta^{k} \partial_{k} \tilde{\Gamma}^{i} \\ &- \Gamma^{k} \partial_{k} \beta^{i} + \frac{2}{3} \tilde{I}^{i} \partial_{k} \beta^{k}, \\ \partial_{i} \Theta &= \frac{\alpha}{2} \left((3R - \tilde{A}_{ij} \tilde{A}_{ij} + \frac{2}{3} (\tilde{K} + 2\Theta)^{2} \right) - \alpha \left(8\pi E + \kappa_{i} (2 + \kappa_{2}) \Theta \right) \\ &+ \beta^{i} \partial_{i} \Theta \end{split}$$

3+1-decomposition

 $\partial_t \mathbf{u} = \mathbf{A}(\mathbf{u})\mathbf{u} + \mathbf{v}$

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

Reformulating as initial value boundary problem

Theoretical Framework:

- well-posedness of PDEs
- advantageous properties

Computational Methods:

- HPC facilities
- parallelizable code
- numerical techniques

Theoretical Framework:

- well-posedness of PDEs
- advantageous properties

Computational Methods:

- HPC facilities
- parallelizable code
- numerical techniques

- Microphyics (EOS, Neutrinos)
- Magnetic fields
- Turbulences
- Parameter space

- Microphyics (EOS, Neutrinos)
- Magnetic fields
- Turbulences
- Parameter space

• Can we test matter above the TOV limit?

$$\begin{split} & \partial_t \Theta = \frac{\alpha}{2} \binom{(3)R - \tilde{A}_{ij}\tilde{A}^{ij} + \frac{2}{3}(\tilde{K} + 2\Theta)^2) - \alpha \left(8\pi E + \kappa_1(2 + \alpha) + \beta^i \partial_i \Theta\right)}{+ \beta^i \partial_i \Theta} \end{split}$$

Ujevic et al., Astrophys.J.Lett. 962 (2024) 1, L3

- Microphyics (EOS, Neutrinos)
- Magnetic fields
- Turbulences
- Parameter space

• Can we test matter above the TOV limit?

No!

 $\begin{array}{l} \partial_t \Theta &= \frac{\alpha}{2} \begin{pmatrix} (3)_R - \tilde{\lambda}_{ij} \tilde{A}^{ij} + \frac{2}{3} (\tilde{K} + 2\Theta)^2 \end{pmatrix} - \alpha \left(8\pi E + \kappa_1 (2 + \kappa_2) + \beta^i \partial_i \Theta \right) \\ &+ \beta^i \partial_i \Theta \end{array}$

Ujevic et al., Astrophys.J.Lett. 962 (2024) 1, L3

- Microphyics (EOS, Neutrinos)
- Magnetic fields
- Turbulences
- Parameter space

 $\partial_t \Theta = \frac{\alpha}{2} \binom{(3)R - \tilde{A}_{ij}\tilde{A}^{ij} + \frac{2}{3}(\tilde{K} + 2\Theta)^2}{+\beta^i \partial_i \Theta} - \alpha \left(8\pi E + \kappa_1(2 + \kappa_2)e^{-2}\right) + \beta^i \partial_i \Theta$

Gieg et al., Universe 8 (2022) 7, 370

- Microphyics (EOS, Neutrinos)
- Magnetic fields
- Turbulences
- Parameter space

Schianchi et al., arXiv: 2307.04572 Gieg et al., Universe 8 (2022) 7, 370

Charged Current Processes $\nu_e + n \leftrightarrow p + e^ \overline{\nu}_e + p \leftrightarrow n + e^+$ $\nu_e + (A, Z) \leftrightarrow (A, Z + 1) + e^-$ Thermal Processes $e^- + e^+ \leftrightarrow \nu_x + \overline{\nu}_x$ $N + N \leftrightarrow N + N + \nu_x + \overline{\nu}_x$ Elastic Scattering $\nu + \alpha \rightarrow \nu + \alpha$ $\nu + p \rightarrow \nu + p$ $\nu + n \rightarrow \nu + n$ $\nu + (A, Z) \rightarrow \nu + (A, Z)$

 $\partial_t \Theta = \frac{\alpha}{2} \left({}^{(3)}R - \hat{A}_{ij} \hat{A}^{ij} + \frac{2}{3} (\hat{K} + 2\Theta)^2 \right) - \alpha \left(8\pi E + \kappa_1 (2 + 2\Theta)^2 \right) + \alpha \left(8\pi E +$

• Inclusion of neutrinos changes matter outflow and remnant's lifetime

• Amount of produced elements and their abundance depend on merger properties and neutrino scheme

- Microphyics (EOS, Neutrinos)
- Magnetic fields
- Turbulences
- Parameter space

	1400		0.00	\cap
0.5	1200		7.5	-14
0.4	1000		7.0 🚍	12
0.3 . 2	800		6.5 Ja	10
0.2	600		6.0 (j)=6	
	400		5.0	
0.1	200		-4.5	
0.0	0	1100 1000 100 100 100 100 100 1000 1000	4.0	4

magnetic

fields and

turbulences

PRD 110 (2024) 8, 084046

 $\partial_t \Theta = \frac{\alpha}{2} \binom{(3)R - \tilde{A}_{ij} \tilde{A}^{ij} + \frac{2}{3} (\tilde{K} + 2\Theta)^2}{+\beta^i \partial_i \Theta} - \alpha \left(8\pi E + \kappa_1 (2 + \kappa + 2\Theta)^2 - \alpha (2 + \kappa$

t = 0.0 ms $t=8.13~{\rm ms}$ 10^{15} 10^{14} t = 10.34 mst = 9.61 ms 10^{14} $\rho \; [\mathrm{g/cm^3}]$ [B] [G] 10^{13} t = 21.43 mst = 25.12 ms 10^{12} 10^{12} -

- Microphyics (EOS, Neutrinos)
- Magnetic fields
- Turbulences
- Parameter space

$\partial_t\Theta = \frac{\alpha}{2} \begin{pmatrix} ^{(3)}R - \bar{\lambda}_{ij}\dot{A}^{ij} + \frac{2}{3}(\dot{K} + 2\Theta)^2 \end{pmatrix} - \alpha \left(8\pi E + \kappa_1(2 + \kappa_2)\right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2}\right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1$ + Bi die

Markin et al., PRD 108 (2023) 2, 023016

 ρ [g cm - 10¹² Time: 0.0 ms

Input Physics:

- Microphyics (EOS, Neutrinos) •
- Magnetic fields •
- Turbulences •
 - Parameter space

parameter space coverage

 $M_{\text{NS}} = 1.4~\text{M}_{\odot}$ $M_{BH}=0.5~M_{\odot}$

• First simulation of a subsolar mass BH – neutron star merger

- large amount of ejecta
- existing waveform models perform badly when describing

space coverage

 $\partial_t \Theta = \frac{\alpha}{2} \binom{(3)R - \tilde{A}_{ij}\tilde{A}^{ij} + \frac{2}{3}(\tilde{K} + 2\Theta)^2) - \alpha \left(8\pi E + \kappa_1(2 + \kappa_2) + \beta^i \partial_i \Theta\right)}{+\beta^i \partial_i \Theta}$

publicly released more than 590 individual simulations using more than ¹/₂ billion CPUhs

Dietrich et al., CCG 35 (2018) 24, 24LT0 Gonzales et al., QCG 40 2023) 8, 085011

- Microphyics (EOS, Neutrinos)
- Magnetic fields
- Turbulences
 - Parameter space

Various models

Numerical Relativity Simulations

Post-Newtonian Theory

Effective-one-body Formalism

Phenomenological Models

hundreds of millions of templates need to interpret the data

tidal effects lead to an accelerated inspiral

Waveform Model Development through NR simulations

Effective-one-body or Phenomenological Model

confirmation/calibration

Numerical Relativity Simulations

TD & Hinderer, Phys.Rev.D 95 12, 124006

N.Kunert et al., PRD105 (2022) 6, L061301

N.Kunert et al., PRD105 (2022) 6, L061301

N.Kunert et al., PRD105 (2022) 6, L061301

GW170817

 Λ determines tidal deformability

GW170817

 Λ determines tidal deformability

 \rightarrow no assumption about the type of the compact object

Phys.Rev. X9 (2019) 011001

GW170817

 Λ determines tidal deformability

EM Signals – Kilonova

- neutron rich ejecta produce heavy r-process elements
- pseudo-black body radiation from r-process elements
- mergers are major sites for the formation of heavy elements

Uncertainties

- 1.) Knowledge about the outflowing material (mass, velocity, geometry, composition)
- 2.) Heating rates depend on the formed elements and ejecta properties
- 3.) Incomplete knowledge about opacities for complicated elements

Cross-code comparisons for numerous geometries and assumptions \rightarrow estimate on the modelling uncertainty

1.) compute lightcurves for a set (grid) of ejecta properties with a radiative transfer code

2.) interpolate within this grid through Gaussian Process Regression or a Neural Network

3.) link ejecta properties through numerical-relativity predictions to the binary properties

Huth et al., Nature 606 (2022) 276-280

nature

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

nature > articles > article

Article Open Access Published: 08 June 2022

Constraining neutron-star matter with microscopic and macroscopic collisions

<u>Sabrina Huth</u> ⊡, <u>Peter T. H. Pang</u> ⊡, <u>Ingo Tews</u>, <u>Tim Dietrich</u>, <u>Arnaud Le Fèvre</u>, <u>Achim Schwenk</u>, <u>Wolfgang Trautmann</u>, <u>Kshitij Agarwal</u>, <u>Mattia Bulla</u>, <u>Michael W. Coughlin</u> & <u>Chris Van Den Broeck</u>

Huth et al., Nature 606 (2022) 276-280

Science Summary and Outlook

 numerical-relativity simulations (microphysics and parameter coverage)

 new nuclear physics and multimessenger astrophysics framework

• constraints on the Hubble constant and supranuclear-dense equation of state

Gravitational Waves

Electromagnetic Signals

... neutrino detectors, nuclear physics facilities,