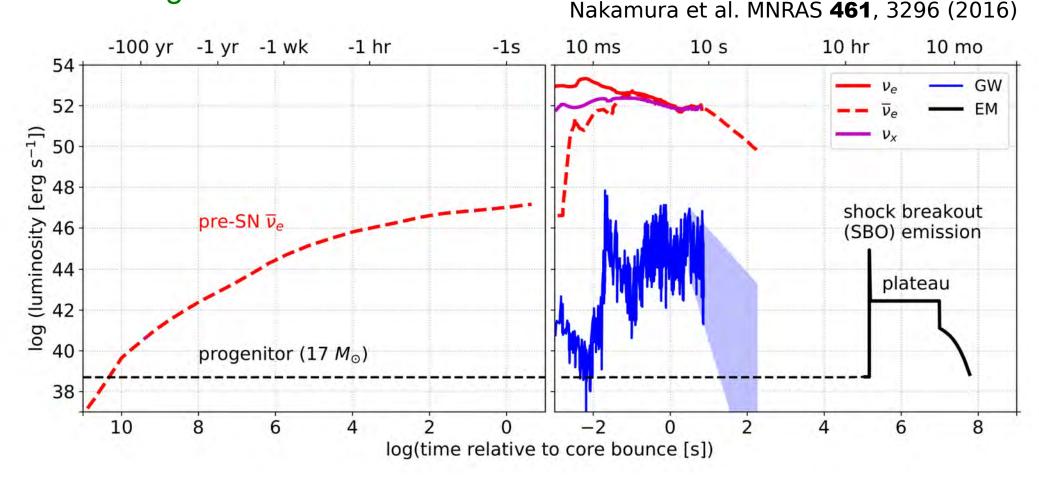
SNEWS 2.0: The New Plan for the Next Galactic Supernova

Jim Kneller NC State + SNEWS 2.0

RICE


SNEWS is supported by the National Science Foundation including grants PHY-1506069, PHY-1505960, & PHY-2209534.

UPPSALA UNIVERSITET

https://snews2.org/

- The next supernova in the Milky Way will be an incredible opportunity to see the details of how a star explodes.
- The rate of supernovae in our Galaxy is ~ 2 / century and we have no idea when the next one will occur.
- Neutrinos are the first / clearest sign that the explosion has begun.

SUPERNOVA EARLY ALERT NETWORK

First International Workshop

Boston University Boston, MA

September 11-12, 1998

A meeting of neutrino experimenters, supernova theorists and astronomers to plan the world-wide response to the next Galactic core collapse supernova.

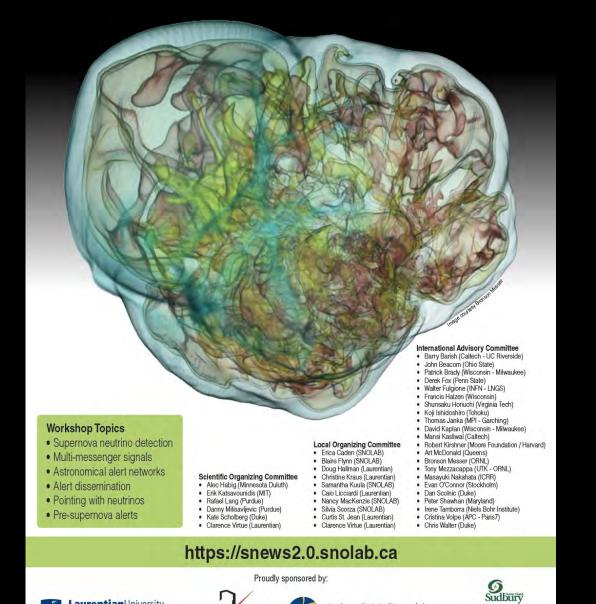
Topics for Discussion:

- The neutrino signal and triangulation: what will the individual experiment signals look like? How well will it be possible to point to the supernova by combining neutrino burst timing information from different neutrino experiments?
- Inter-experiment connection: alert implementation and data exchange issues.
- Connection with the astronomical community: how can we organize astronomer responses to have the best possible chance of observing early supernova light?

- The Supernova Early Warning System (SNEWS) is (was) a global network of detectors looking for coincident bursts of neutrinos.
- It has been running since 1998, fully automated since 2005, with virtually zero downtime.

Fast forward 20 years

- There are now many more, larger and more sensitive neutrino and DM detectors, which offers the possibility of doing more than just issuing an alert.
- Passing alerts between facilities is now very common and the attitude of astronomers towards alerts has changed.


SuperNova Early Warning System

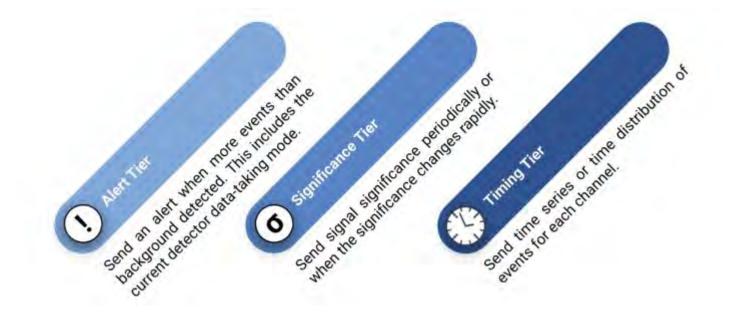
LaurentianUniversity UniversitéLaurentienne

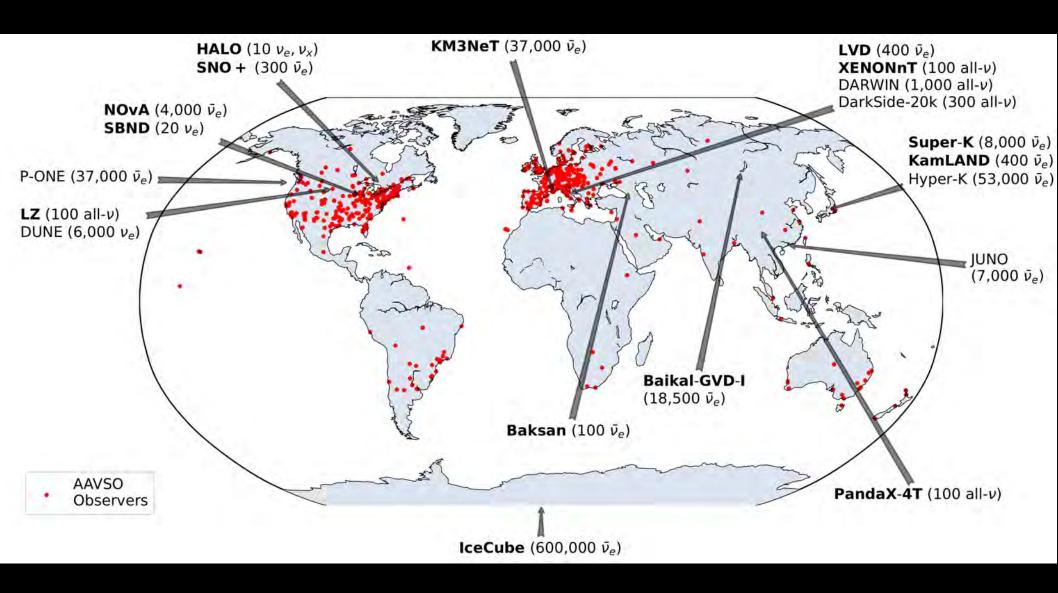
SNEWS 2.0 Workshop

Supernova Neutrinos in the Multi-Messenger Era

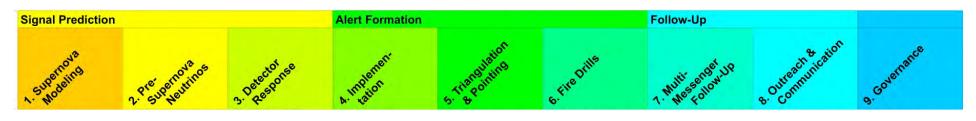
June 14-17, 2019 Laurentian University, Sudbury, Canada

Arthur B. McDonald


SNEWS 2.0


 SNEWS 2.0 is a new plan for what to do when the next nearby supernova occurs.

Al Kharusi et al, New J. Phys. 23 031201 (2021)

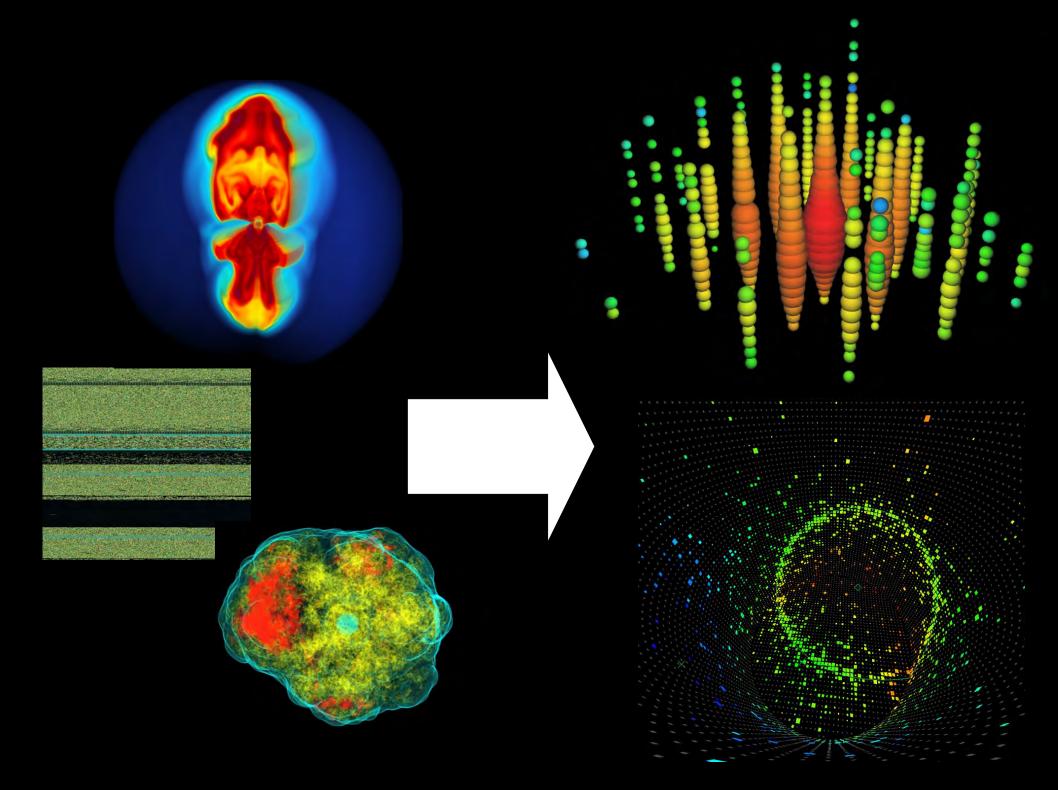

- The goals of SNEWS 2.0 are to:
 - reduce the threshold for generating alerts in order to gain sensitivity,
 - reduce alert latency,
 - combine pointing information from individual experiments and enhance it with timing multilateration (triangulation),
 - implement a pre-supernova alert for nearby SN candidates,
 - develop a follow-up observing strategy to prepare the astronomical community for the next galactic supernova,
 - engage amateur astronomer and citizen science communities.

- The first goal of SNEWS 2.0 was to rewrite the codebase for passing information between detectors and SNEWS.
 - The new coincidence system uses HOPSKOTCH from SCiMMA
- SNEWS 2.0 is currently running in parallel with SNEWS 1.0 which will be switched off (probably) mid 2026.
- Detectors can sign up for different levels of data exchange.
 - MOUs are currently being signed by SNEWS and the detectors.

SNEWS 2.0 is organized into 3 divisions.

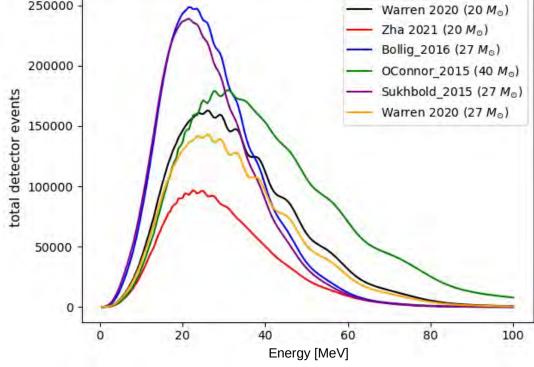
- SNEWS 2.0 has published / submitted 7 papers so far (with 2 more coming soon).
- We have much more to do.

Task	2025		2026				2027			2	028	Responsible	
	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Personnel
Pointing Algorithms	SNEWPDAG - light-curve cr - flavor-depend	oss-correlation	SNEWPDAG v2.0. Beta: - light-curve cross correlation for pointing - flavor-dependent pointing - Automatic generation of HEALPix skymaps					SNEWPDAG v3.0 - Fully functional light curve and flavor-dependent pointing - Automatic generation of HEALPix maps - Integration with publishing tools to post map links to <u>snews2.org</u> and GCN			org and GCN	Scholberg (Duke) Westerdale (UCR) Tseng (Oxford)	
Fire Drills	Internal SNEWS Drill	Internal SNEWS Drill	Internal SNEWS Drill	Internal SNEWS Drill	Internal SNEWS Drill	Internal SNEWS Drill	Internal SNEWS Drill	Internal SNEWS Drill	Internal SNEWS Drill	Internal SNEWS Drill	Internal SNEWS Drill	Internal SNEWS Drill	Habig (UMD) BenZvi (UR)
	Community Fire Drill with AAVSO		Community Fire Drill with AAVSO		Community Fire Drill with AAVSO		Community Fire Drill with AAVSO		Community Fire Drill with AAVSO		Community Fire Drill with AAVSO		Pablo (ÀAVŚO) Winslow (MIT) O'Sullivan (Uppsala)
Multi- messenger follow-up				AAVSO Webinar	 Candidate vetting Community engagement Preliminary Analysis of RSG sample 		AAVSO Webinar	- Candidate ve - Community e - Analysis of R	engagement		AAVSO Webinar	Pablo (AAVSO) Milisavljevic (Purdue) Coleiro (UPC) Pointon (BCIT) Horiuchi (VT/U. Tokyo)	
Signal modeling				on with MARLEY (CEvNS channel) on of presupernova models				SNEWPY 4.0: - Integration with vESPER + Xenon codes - New CCSN models				Kneller (NC State) Patton (Trinity) Scholberg (Duke) Westerdale (UCR)	
	Presupernova RSG models: - RSG grid models generated with MESA - v1.0 of the catalog available on Zenodo				Presupernova RSG models: - v2.0 of the catalog available on Zenodo			Presupernova RSG models: - v3.0 catalog				Wolfs (UR) Colomer (ULB) O'Connor (Stockholm) Migenda (KCL) Sheshukov (JINR)	
Cyber infrastructure	SNEW CS + PT v1.5 - Mult-detection channels (beta) - Integration with GCN (beta)			SNEWS CS + PT v2.0 - Full support for neutrino time series - Full support for flavor-dependent detection channe - Finalized GCN format + fire drills			hannels	SNEWS CS + PT v2.5 - Automated support for monthly tests - Integration / support for new detectors				Habig (UMD) BenZvi (UR)	
				Workshop & Hackathon	Decommission 1.0	ning of SNEWS		Workshop & Hackathon				Workshop & Hackathon	All Pis


Signal Modeling

- Signal Modeling aims to support SNEWS 2.0 by providing theoretical models of the neutrino flux at Earth from all possible transient astrophysical sources.
- The models can be used to understand detector response, design algorithms, and for the fire drills.

https://github.com/SNEWS2/snewpy


Current release is 1.5. Version 2.0 is coming soon

- SNEWPY is a python package with code elements that allow a user to bridge the gap between supernova simulations and detector signals.
- The code elements can:
 - turn a supernova simulation into either a time series of neutrino fluxes (or a total fluence) at Earth, including the effect of flavor transformation.
 - send the time series through an event rate calculator such as SNOwGLoBES or event generator such as sntools or MARLEY*.
 - collate the output into the observable channels.
- SNEWPY is designed so that data can be inserted or extracted at the connections between its components.
 - e.g. a simulation has already accounted for flavor transformation.

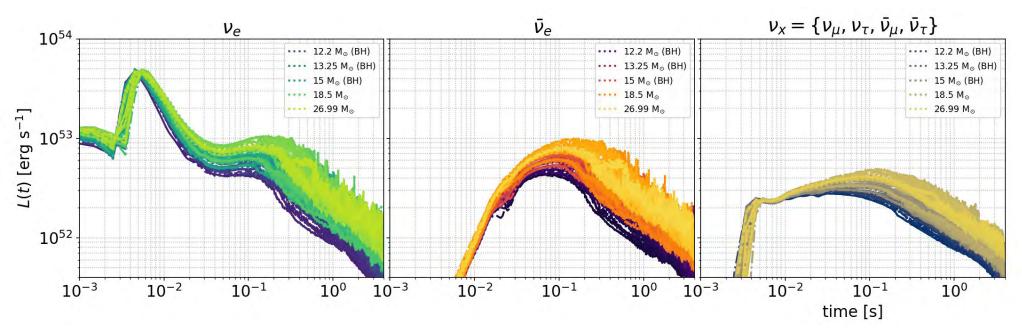
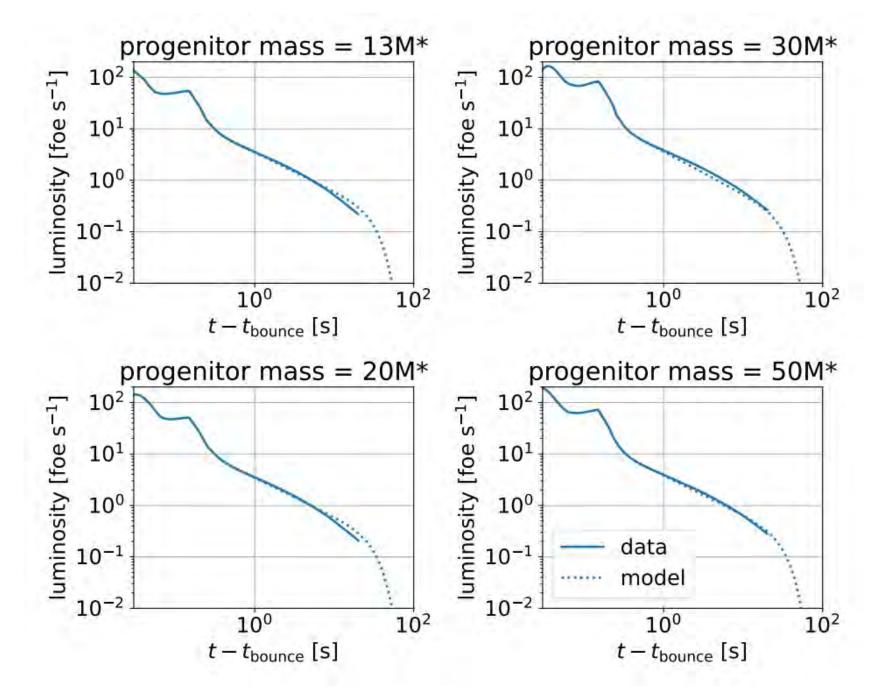

Experiment	Туре	Mass (kt)	Location	11.2 M_{\odot}	$27.0 \; M_{\odot}$	$40.0 \; M_{\odot}$	
Super-K	$H_2O/\bar{\nu}_e$	32	Japan	4000/4100	7800/7600	7600/4900	
Hyper-K	$H_2O/\bar{\nu}_e$	220	Japan	28K/28K	53K/52K	52K/34K	
IceCube	String/ $\bar{\nu}_{e}$	2500*	South Pole	320K/330K	660K/660K	820K/630K	
KM3NeT	String/ $\bar{\nu}_{e}$	150*	Italy/France	17K/18K	37K/38K	47K/38K	
LVD	$C_n H_{2n} / \bar{\nu}_e$	1	Italy	190/190	360/350	340/240	
KamLAND	$C_n H_{2n} / \bar{\nu}_e$	1	Japan	190/190	360/350	340/240	
Borexino	$C_n H_{2n} / \bar{\nu}_e$	0.278	Italy	52/52	100/97	96/65	
JUNO	$C_n H_{2n} / \bar{\nu}_e$	20	China	3800/3800	7200/7000	6900/4700	
SNO+	$C_n H_{2n} / \bar{\nu}_e$	0.78	Canada	150/150	280/270	270/180	
ΝΟνΑ	$C_n H_{2n} / \bar{\nu}_e$	14	USA	1900/2000	3700/3600	3600/2500	
Baksan	$C_n H_{2n} / \bar{\nu}_e$	0.24	Russia	45/45	86/84	82/56	
HALO	Lead/ ν_e	0.079	Canada	4/3	9/8	9/9	
HALO-1kT	Lead/ ν_e	1	Italy	53/47	120/100	120/120	
DUNE	Ar/ν_e	40	USA	2700/2500	5500/5200	5800/6000	
MicroBooNe	Ar/ν_e	0.09	USA	6/5	12/11	13/13	
SBND	Ar/ν_e	0.12	USA	8/7	16/15	17/18	
DarkSide-20k	Ar/any v	0.0386	Italy		250	-	
XENONnT	Xe/any v	0.006	Italy	56	106	_	
LZ	Xe/any v	0.007	USA	65	123		
PandaX-4T	Xe/any ν	0.004	China	37	70	250000 -	

Table taken from Al Kharusi et al, New J. Phys. **23** 031201 (2021)

The Models


- SNEWPY has access to >800 supernova simulations from different groups.
 - Most are CCSN (including BH forming cases) in 1D
 - Fornax models from Burrows & Vartanyan
 - We have some 3D models of SN Ia and PISN.

 SNEWPY 2.0 will come with the data for even more simulations, including pre-supernova models

- Many of the models only simulate 1-2 seconds of the supernova.
- SNEWPY 2.0 will include methods for extrapolating the neutrino emission in time.

see Ekanger et al PRD, 106 686 (2022) for details

Extended versions of the Nagazato (2013) models

The Flavor Prescriptions

- Almost all the simulations available to SNEWPY do not account for:
 - flavor transformation within the SN,
 - decoherence and whatever else might happen outside the SN on the trip to Earth,
 - Earth matter effects
- Computing the flavor transformation well (i.e. solve the Schrodinger equation or something like it) for many tens of snapshots taken from a single simulation can take 10⁴ - 10⁶ CPU hours.

- SNEWPY bypasses this bottleneck by using prescriptions* for the flavor transformation.
- The flux at Earth from a supernova at a distance d is computed using the equation.

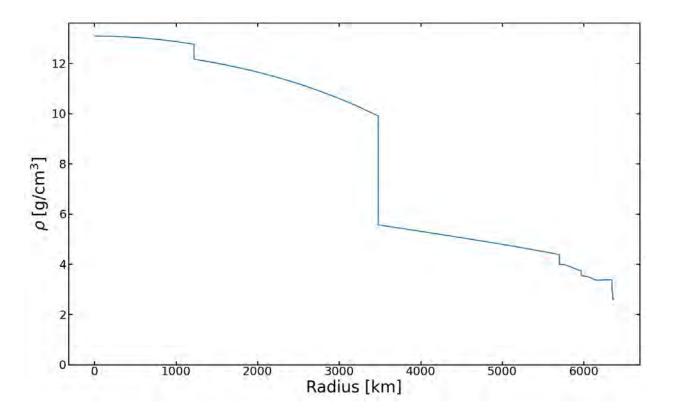
$$\begin{pmatrix} F_{e} \\ F_{\mu} \\ F_{\tau} \end{pmatrix} = \frac{1}{4 \pi d^{2}} \begin{pmatrix} p_{ee} & p_{e\mu} & p_{e\tau} \\ p_{\mu e} & p_{\mu\mu} & p_{\mu\tau} \\ p_{\tau e} & p_{\tau\mu} & p_{\tau\tau} \end{pmatrix} \begin{pmatrix} \Phi_{e} \\ \Phi_{\mu} \\ \Phi_{\tau} \end{pmatrix}$$

* mostly

 SNEWPY has multiple prescriptions for the flavor transformation in the supernova.

For three flavors:

- No Oscillations and Complete Exchange
- Adiabatic MSW in both mass orderings
- Non-Adiabatic MSW H resonance in both mass orderings
- Two Flavor Decoherence in the H resonance mixing channel in both mass orderings.
- Three Flavor Decoherence
- Numerical calculation of the matter effect for a given density profile


For four flavors:

- Adiabatic MSW of four flavors in both mass orderings
- A four-flavor MSW where the 'outer' es resonance is non adiabatic, for both mass orderings.

- SNEWPY 2.0 will introduce 'modifiers' that allow for additional flavor transformation in the vacuum and Earth-Matter.
 - We have worked with the astropy developers to help with the Earth-Matter calculations.
- The SN flavor prescriptions and modifiers can be chained together.

- BEMEWS is a python module for calculating the Earth-Matter Effect upon neutrinos.
- The module numerically solves the Schrodinger equation for a given neutrino trajectory through the Earth.
 - BEMEWS uses the PREM but this can be swapped for something else.

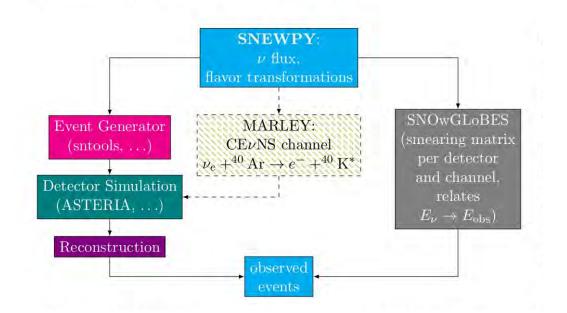
- The calculation is 3 flavor, does neutrinos and antineutrinos simultaneously, and can be done for multiple energies.
- It takes BEMEWS O(10 ms) to do the calculation per neutrino on a regular workstation / laptop.
- BEMEWS can be run standalone or with SNEWPY.

```
from astropy.time import Time
from astropy.coordinates import SkyCoord, EarthLocation, AltAz
```

```
from snewpy.flavor_transformation import *
from snewpy.neutrino import *
```

```
#- skycoordinates of neutrino source
Betelgeuse = SkyCoord.from_name('Betelgeuse')
```

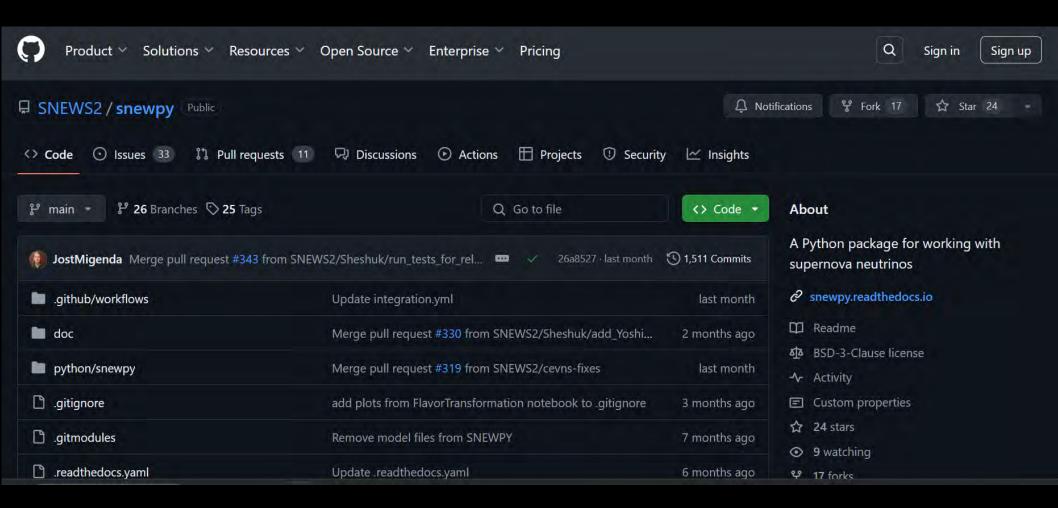
```
#- neutrino detector
SuperK = EarthLocation.of_site('SuperK')
UTcoffset = +9*u.hour
```


```
#- when the supernova occured
time = Time('2021-5-26 23:14:00') - UTcoffset
```

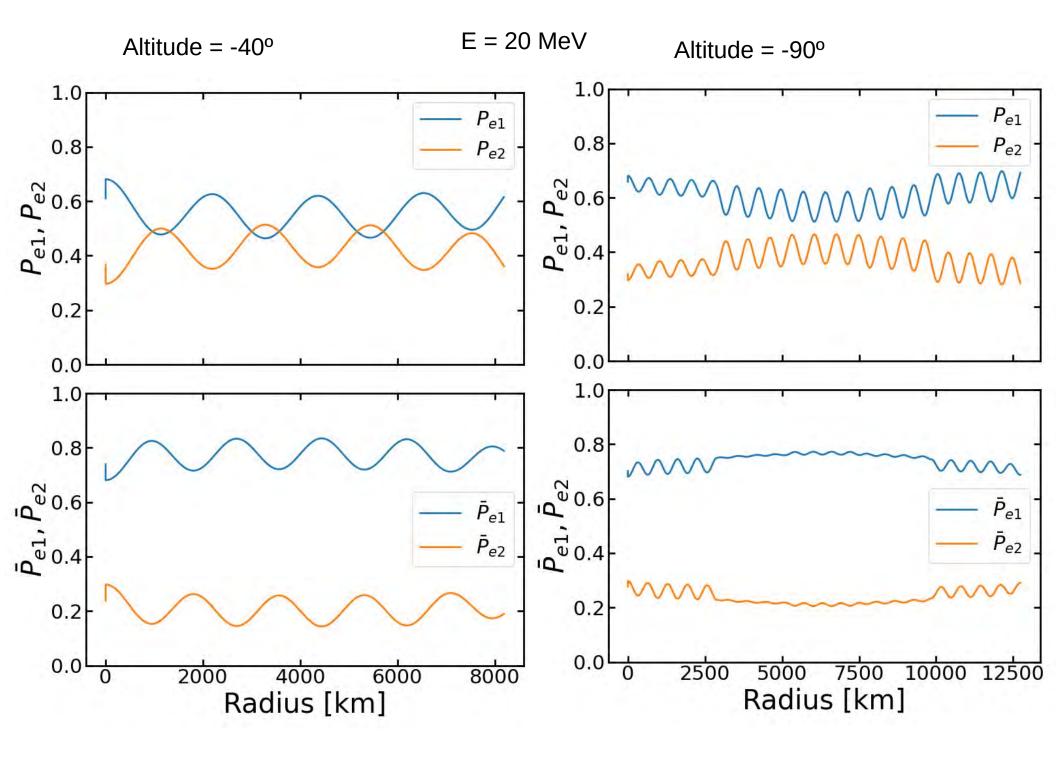
```
#- altaz of supernovae at detector
sn_altaz = Betelgeuse.transform_to(AltAz(obstime=time, location=SuperK))
```

```
#- set up flavor mixing, assuming the NMH
mix_params = MixingParameters(MassHierarchy.NORMAL)
```

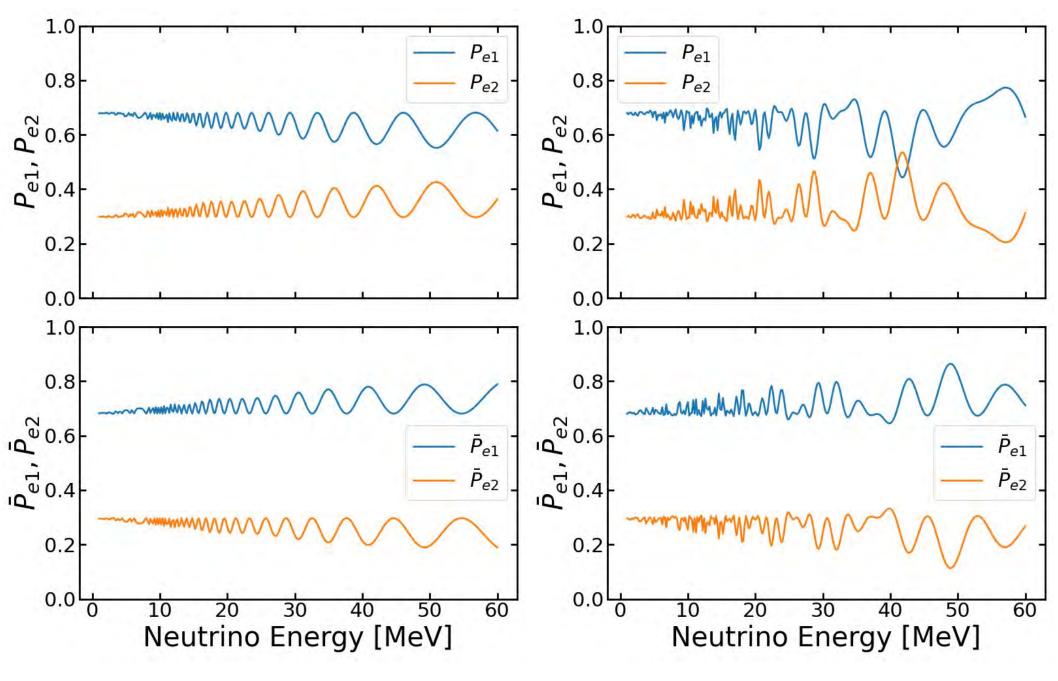
```
SupernovaTransition = AdiabaticMSW(mix_params)
EarthMatterTransition = EarthMatter(sn_altaz , mix_params)
```


The interface with other codes

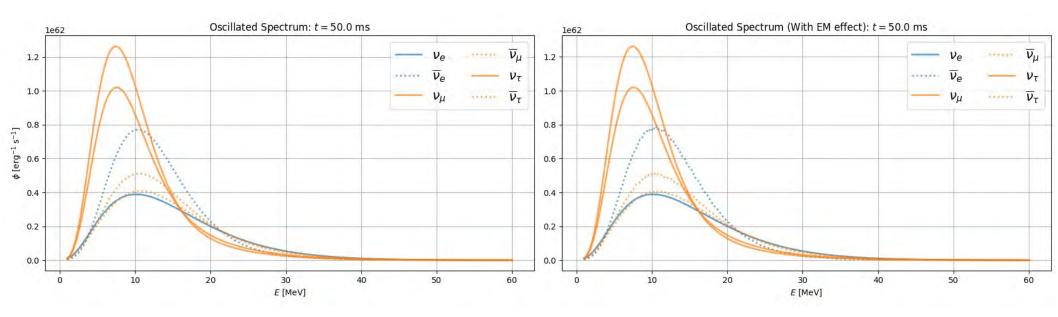
- SNEWPY 2.0 no longer requires the user to install SNOwGLoBES
 - installing SNOwGLoBES was a common user problem with SNEWPY because SNOwGLoBES required installing a lot of other software.
- Instead, SNEWPY 2.0 uses the SNOwGLoBES data files and does the calculation itself.
 - this means we also avoid writing / reading a lot of files to / from disk so it's much faster.

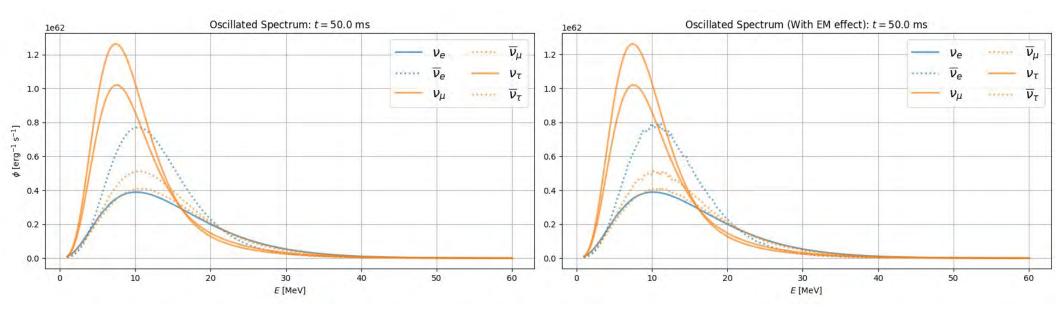

Example script

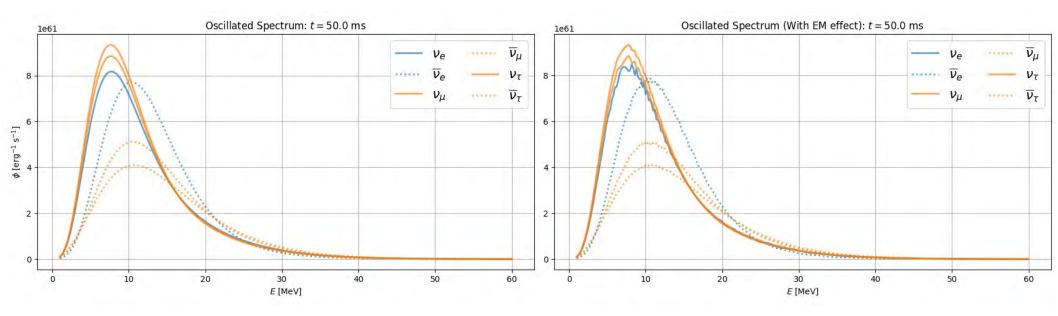
SNEWPY can be downloaded from GitHub

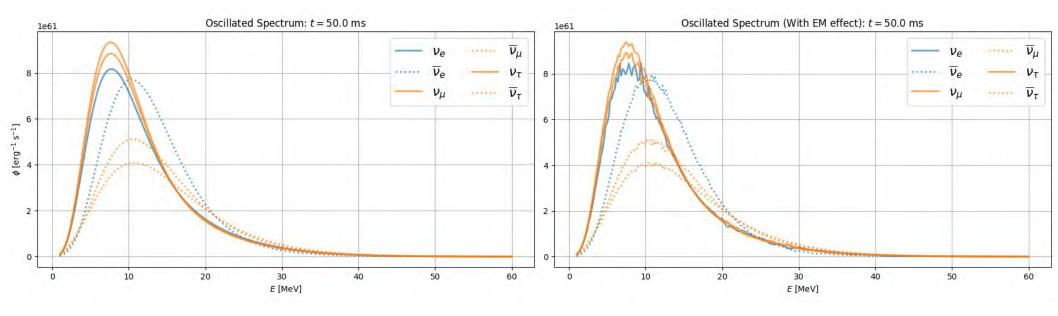

Summary

- SNEWS 2.0 is the new plan for what to do when the next nearby supernova occurs.
- The new system is up and running, now the goal is to optimize the system to identify the progenitor.
- SNEWPY is a bridge between supernova simulations and detector signals.
- Version 2.0 is being finalized and will be released soon.
- Please send us your suggestions for new features.




Altitude = -90°


Adiabatic MSW, NMO, Altitude = -40°


Adiabatic MSW, NMO Altitude = -90°

Non-Adiabatic MSW H resonance, NMO, Altitude = -40°

Non-Adiabatic MSW H resonance, NMO, Altitude = -90°

