

IceCube: the First Decade of Neutrino Astronomy ... and neutrino physics

francis halzen

IceCube.wisc.edu

highest energy "radiation" from the Universe: mostly protons !

high energy high luminosity

LHC accelerator should have circumference of Mercury orbit to reach 10²⁰ eV!

Courtesy M. Unger

Fly's Eye 1991 300,000,000 TeV

v and γ beams : heaven and earth

accelerator is powered by large gravitational energy

supermassive black hole

nearby radiation

 $p + \gamma \rightarrow n + \pi^{+}$ $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$ $\rightarrow p + \pi^{0}$ $\mu^{+} \rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$ $\pi^{0} - \gamma + \gamma$

black hole accelerating protons submersed in a target of radiation produce pions

 π^+ –

 π^0

 $\stackrel{+}{\longrightarrow} \mu^{+} + (\nu_{\mu})$ $\stackrel{-}{\longrightarrow} e^{+} + (\nu_{\mu}) + (\nu_$

45

 u_e

JXK

Je

P

T

M///

2

SHOCK WAVE

10,000 times too small to do neutrino astronomy...

IceCube: 5160 photomultipliers instrument one km³ of Antarctic ice between 1.4 and 2.4 km depth as a Cherenkov detector

- muon produced by
 neutrino near IceCube
- comes through the Earth
- 2,600 TeV inside detector
- not atmospheric

neutrinos interacting inside the detector

muon neutrinos filtered by the Earth

superior total energy measurement to 10%, all flavors, all sky

superior angular resolution 0.3° including systematics

Glashow resonance event with energy 6.3 PeV

$$E_R = M_W^2 / [2m_e]$$
$$= 6.32 \,\mathrm{PeV}$$

resonant production of a weak intermediate boson by an antielectron neutrino interacting with an atomic electron

oscillations of PeV neutrinos over cosmic distances to 1:1:1

- oscillations of PeV neutrinos over cosmic distances to 1:1:1
 - high energy (> PeV) nutau neutrinos are of cosmic origin

starting events (medium energy)

- double bang events: 8 predicted on a background of 1 and 7 observed
 - each nutau event is an extragalactic neutrinos search

$$\lambda \sim \frac{1}{E} \rightarrow 10^{-33} \, \mathrm{cm}$$

quantized space: quantum fluctuations of space-time geometry is activated

- neutrino decoherence from quantum gravitational space-time fluctuations
- modifies the neutrino dispersion relation over long baselines
- IceCube reaches record sensitivities at the Planck scale even using atmospheric neutrinos

Quantum Gravity at the Planck scale

speed of photons and neutrinos depends on their

energy, like photons in a crystal

 Planck scale vacuum fluctuations probed by high energy particles

$$E^{2} = p^{2} + m^{2} \pm E^{2} \left(\frac{E}{M_{QG}}\right)^{n} \pm \dots$$

 modification to dispersion relation leads to an energy dependent speed of light: Lorentz invariance violation

IceCube neutrinos >100 GeV (one year shown) (reaches neutrino purity of > 97% but overwhelmingly atmospheric)

CROSS SECTION WITH EARTH AS THE TARGET

•

one million atmospheric neutrinos:

- > 2 megaton detector
- near 25 GeV energy nearly all muon neutrinos reappear as tau neutrinos. We measure both!

IceCube veto: puts DeepCore at an effective depth well below SNOLAB

Atmospheric oscillations progression

Atm. Osc. - Newest result

- CNN-based classification and reco
 - Uses inputs that our MC describes well
 - Recovers events that are hard to handle
 - 150,000 ν candidates in 9 years of data

no-osc Data

103

• Best fit

 $\sin^2 \theta_{23} = 0.54^{+0.04}_{-0.03}$ $\Delta m^2_{32} = 2.40^{+0.05}_{-0.04} \times 10^{-3} \text{ eV}^2$ GoF *p*-value: 19%

- Vall NC

Data/MC

102

L/E [km/GeV]

×10

3.0

0.0

1.2

1.0

101

Ratio

Events 1.5

IceCube Upgrade Physics: Oscillation Sensitivity

IceCube Overview

- 10 megaton volume
- string spacing : $125m \rightarrow 35m \rightarrow 22m$
- module spacing: $17m \rightarrow 7m \rightarrow 3m$

IceCube Upgrade 2025

IceCube + JUNO !

IceCube Simulation 2.60 ***************************** (10⁻³ eV²) 2.55 2.50 2.45 IC86 (12yr) Injected IC86 (15yr) 2.40 + IC93 (3yr) truth 0.55 0.45 0.50 0.60 0.40 $\sin^2(\theta_{23})$ 3.0 T2K 2022 NOVA 2021 IceCube 2023 MINOS+ 2020 SuperK 2020 2.8 Normal Ordering, $\Delta m_{32}^2 (10^{-3} eV^2)$ 90% C.L./sensitivity 2.6 2 4 IceCube Upgrade **3yr Sensitivity**, 2.2 Injected truth: - NuFit 5.2 IceCube 2023 2.0-0.3 0.4 0.5 0.6 0.7 $\sin^2(\theta_{23})$

Sensitivities - Atm. Osc. Params

NMO

leading atmospheric beam detector until the advent of HyperK in 2028

supernova burst: light from $\overline{\nu}_e + p \rightarrow n + e^+$

- PMT noise low (280 Hz)
- detect correlated rate increase on top of PMT noise when supernova neutrinos pass through the detector

1 meter

starting points of neutrino showers from supernova neutrinos

- equivalent detection volume of a 2 megaton SuperK-style detector
- 1 million events from 10 kpc
- neutronization electron neutrinos
- energy measurement from two-photon correlation

MeV neutrinos in the Upgrade and Gen2

in the extreme universe the energy in neutrinos is larger than the energy in gamma rays observed at GeV energies

one gamma ray for every neutrino?

THE ICECUBE COLLABORATION

ED KINGDOM

ALIA 1

80 high-energy neutrinos from the direction of the active galaxy NGC 1068

update

0

 $\hat{\psi}^2$ [deg²]

NGC 1068 comes into focus

AGN: INSIDE AND OUT

cores of active galaxies

target densities required

- to produce the neutrino flux
- to suppress the flux of the accompanying gamma ray from π⁰s

requires a target density only found within < 100 Schwarzschild radii of the black hole

THE ICECUBE COLLABORATION

ED KINGDOM

ALIA 1

overflow sides

Lorentz violation: $\Delta E vs \Delta t$

violation of Lorentz invariance because of Planck scale physics can be detected through time delays of high energy neutrinos relative to low energy photons

$$\Delta t \approx \frac{1+n}{2} \left(\frac{d}{c}\right) \left(\frac{E_{\nu}}{M_{QG}}\right)^{n}$$

from a source at a distance d

It is a small effect \rightarrow integrate over long distances