

Flavor-Violating Axions: From the Lab to the Cosmos

¹Department of Physics, University of California, Berkeley, CA, USA ²Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA

Introduction

Axions are well motivated theoretical particles that can explain the observed smallness of the neutron electric dipole moment through their CP-violating coupling to gluons. More generally, axion-like particles (ALPs) can couple to standard-model fermions, potentially giving rise to charged lepton flavor violation (CLFV). The most general ALP Lagrangian contains the terms

$$\mathcal{L}_{\rm ALP} \supset \frac{\partial_{\alpha} a}{2f_a} \bar{e} \gamma^{\alpha} \left(C_{e\mu}^V + C_{e\mu}^A \gamma_5 \right) \mu$$

allowing, for example, a muon to decay to an electron + ALP (if kinematically allowed), as shown in Fig. 1 (a).

The theory is specified by 4 unknown parameters

- ALP mass m_{a}
- ALP decay constant f_a
- Vector $C_{e\mu}^V$ and axial $C_{e\mu}^A$ couplings

Depending on the ALP mass, different CLFV processes in both laboratory and astrophysical settings — can be used to constrain the ALP parameters. We summarize and compare these limits.

Astrophysical Limits

- Axion production in stellar environments can lead to anomalous cooling
- Extreme electron degeneracy leads to significant muon populations in proto-neutron stars
- If $m_a < m_\mu + m_\rho$, muon can decay to ALP + electron
- For reasonable assumptions in SN1987A, energy loss rate ε is given by [1]

$$\varepsilon \approx 10^{19} \frac{\text{erg}}{\text{gs}} \left(\frac{BR(\mu \to ea)}{4 \times 10^{-3}} \right)$$

- Energy loss can be compared to Raffelt criterion [2] $\epsilon \lesssim 10^{19} \text{ erg g}^{-1} \text{ s}^{-1}$ to constrain ALP parameters, as shown in Fig. 2.
- Bremsstrahlung process $\mu + p \rightarrow e + a + p$ can probe heavier ALPs, but is still highly suppressed for $m_a > m_\mu [3].$

- Requires spin-polarized muons in order to distinguish from $\mu \rightarrow e+2v$ backgrounds
- Future CLFV experiments Mu3e and MEGII can be modified slightly to constrain this process [1]
- Resulting limits on f_a , shown in Fig. 2, are ≈ 2 orders of magnitude stronger than astrophysical constraints

right-l
$$(C_{e\mu}^V =$$

If $m_a > m_{\mu}$, kinematics forbid the decay $\mu \rightarrow e + a$, but we can obtain constraints from $\mu \rightarrow e$ conversion mediated by a virtual ALP, as shown in Fig. 1(b). The ALP interaction with the nucleus can arise from either the CP-odd gluonic coupling or a coupling to light quarks

- BR($\mu + A \rightarrow e + A$) $\leq 10^{-17}$ with ²⁷Al target
- Leading contribution couples to nuclear spin [4], requiring knowledge of nucleon pseudoscalar $F_{P}^{q/N}$ and gluonic $F_{\tilde{G}}^{N}$ form factors [5]
- Limits on f_a from $\mu \rightarrow e$ conversion are much weaker than $\mu \rightarrow e + a$ because Fig. 1(b) is suppressed by $1/f_a^2$, compared to $1/f_a$ for Fig. 1(a)

References:

[1] L. Calibbi, D. Redigolo, R. Ziegler, & J. Zupan, JHEP, **09** 173 (2021)

[2] G. G. Raffelt, Phys. Rept. **198** (1990) 1-113.

[3] H. Zhang, R. Hagimoto, & A. Long, hep-ph/2309.03889

Tess Messerer¹ & Evan Rule^{1,2}

Laboratory Limits

Light ALPs $(m_a \leq m_{\mu})$

- If $m_a \leq m_{\mu}$, then $\mu \rightarrow e + a$ is allowed and can be constrained by detecting the outgoing electrons
- Sensitivity of lab experiments does depend on whether ALPS are handed $(C_{e\mu}^V = -C_{e\mu}^A)$, left-handed $(C_{e\mu}^V = C_{e\mu}^A)$, or isotropic $= 0 \text{ or } C_{e\mu}^{A} = 0$
- Branching ratios BR($\mu \rightarrow ea$) $\lesssim 7 \times 10^{-7}$, 7×10^{-8} for MEGII-fwd* and Mu3e-online, respectively.

Heavy ALPs $(m_a \gtrsim m_\mu)$

$$\mathcal{L}_{\text{ALP}} \supset \frac{\alpha_s}{8\pi} \frac{1}{f_a} a G^a_{\mu\nu} \tilde{G}^{a\mu\nu} + \sum_{q=u,d,s} C^A_q \frac{\partial_\mu a}{2f_a} \bar{q} \gamma^\mu \gamma_5 q,$$

which introduces 3 new unknown couplings C_u^A, C_d^A, C_s^A • Future experiments Mu2e and COMET could probe

Figure 3: Limits on CLFV ALPs from $\mu \rightarrow e$ conversion for three scenarios.

Conclusions

If axion-like particles exist in nature, they generically couple to standard-model leptons in a manner that violates flavor. The ideal probe for constraining such interactions depends on the mass of the axion. In all cases, laboratory constraints are more severe than astrophysical limits. For $m_a \leq m_{\mu}$, dedicated searches for the muon decay $\mu \rightarrow e + a$ can constrain $f_a \gtrsim 10^{10}$ GeV. For $m_a \gtrsim m_{\mu}$, the best limits are typically obtained from $\mu \rightarrow e$ conversion, but these constraints are sensitive to the ALP/quark couplings, including special cases where the conversion rate vanishes.

Acknowledgements

This work was supported in part by the National Science Foundation under cooperative agreement 2020275.