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Roadmap

@ Introduction to collective neutrino oscillations
@ Tools from quantum information science

@ Results from quantum many-body calculations

2/21



Supernovae: Large v Sources

o Neutrino luminosity L, ~ 10% ergs/s

o Neutron star temperature kgl ~ 10 MeV
— ~ 10 neutrinos

@ SN envelope: fypp > Loge neutrinos evolving coherently;
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Large v Sources & Nucleosynthesis Sites

ABB, MJC,

Wo s 1h0
Mass Number A

AVP, RS, XW (2024)

@ Core-collapse SNe, Binary neutron star mergers:

sites for nucleosynthesis beyond Fe-56

@ Without collective oscillations, expect:
<EV5> < <Eﬁe> < <EI/M,V7-,I7M,57—>

@ With collective oscillations:
Higher energy v, » — v. = changen/p
— affect elemental abundances produced

Ved+n+—p+e
De+p<—>n+e+
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Vacuum Flavor Oscillations
An 1-body Hamiltonian

@ Relativistic energy of massive particles:
H, = (Ipl* +m})'*a}(p)ar(p) + (Ip|* + m3)'*aj(p)az(p)

p
= prﬁ . J_;, + const,
p

Am3 -
"1 and B = (0,0, —1)ap = (sin 26,0, — cos 20) r

2|p|
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Geometric Interpretation

“Polarization” vectors

@ Define polarization ]3p =2 <\Il|fp|\ll>
° ﬁp: Bloch vector of one neutrino's density
pp = Trqzp) [0 (P)] = 3(1+ 7 - Bp). L

@ Non-interacting system: for each w,

d - L
o =wpB x By

Entanglement entropy: S = —Tr[pln p]
inversely related to P

e P=1<«< S=0 (Unentangled)
e P=0 < S=1In(2) (Maximally)

u
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Two-body Hamiltonian

Neutrino-neutrino Interactions

@ Low-energy EFT: Z-boson exchange — Fermi 4-point interaction

Ho= Y750 5.0 3 ah(p)ay(pal(@as(a)

V pP.a fvg:e7$
2G S
= \fVF (1 —cospq)Jp - Jq + const
P
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Reducing the Two-body Hamiltonian
The “Bulb Model”

@ Definite-flavor vs emitted isotropically from spherical surface:

@ Make the problem more tractable by averaging over fpq;

Hy,, ~ \fGF (1 —cosVpq) Z Jp - Jy
pP#q
T)ZI,J-L/, where J, = Z J;

{pr 2\PI
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Hamiltonian, In Summary

Total Hamiltonian

@ Hamiltonian for collective neutrino oscillations:

H=H,+Hy~Y wB Jy+ur)> Jo
:Zwé-jw—i-u(r)J

where

w = vacuum oscillation frequency

w(r) = strength of neutrino self-interaction

J = Z J,, = total isospin op
w

@ What are its eigenvalues and eigenstates?
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Proposed solution: Neutrino Flavor Conserved Charges

Richardson-Gaudin Magnets and Bethe ansatz

@ N instantaneously conserved charges hy,: [hy(t), H(t)] =0

o ldentities: > hy, = —J% > wh,=H
e Eigenvalues (e€1,...,€en) uniquely distinguish state
@ Related algebraically:

R
hi::uzw_w ,+Cw

... so their eigenvalues must be, too! (akin to Bethe ansatz)
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Bethe Ansatz Results
(Trivial!) Energy Level Crossings

@ Many level crossings, even within a total isospin subspace
e However, ¢, < eigenvalue of conserved charge h,(1);
non-degeneracy of {¢,} breaks these crossings.

(e.g., N = 10) AVP, MJC, ABB (2019)
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Summary of Many-body Treatment

Adiabatic Evolution

e Consider an initial many-body state, |¥y)
o Example: in the (two-)flavor-basis, |v.v,v.)

o Adiabatically evolve with Schrodinger's Eq.
U ~ Ve—ifot E(t’)dt’%‘r‘yo

o |E;i(t)) = 21251 V;i(t) |7) map energy states to/from mass product
states, parametrized by the solns of Bethe equations

o Y=V HV =diag(E\, ..., E,~) instantaneous energies;
degeneracies are split by time-dependent commuting charges h,,

o Obtain both V| X efficiently using Bethe ansatz
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Mean-field Theory

Random Phase Approximation

@ Ansatz that relative phases for different w are random (RPA)
—> Mean-field approximation of our Hamiltonian:

- S |
Hy,=uJ-J ~ uP-J—=uP?
v =pd S P = o

where P = 2(.J) is the “mean field” with state |¢)) satisfying

- - — -

(J1 - J2) = (J1) - (J2)

@ “Many-body" wave function simply: [¥) = &), [1)(w)), 2N-dim

. But can we neglect the other dimensions?!
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Final Data of All-Electon Flavor Initial State

N = 16 results across the spectrum

e Evolve |Ug) = [1)®'® to r > R, with § = 0.584
e Compare final P,, and S at each w
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Pinpointing Entanglement

Honing on the spectral split

e Evolve |Wg) = [)®" to r > R, with = 0.584
o Here, spectral split frequency: ws = woN cos?(6)
o P (ws) & S(ws) vs. N
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How do we study larger N systems?

1: Tensor Networks

@ (Schmidt) Decompose wave function into product of tensors:
POreN = (1) - -7V (N)

@ For unentangled system, 1)® are numbers; o/w matrices

@ Dims of matrices ¥»* ~ measure entanglement

105F
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How do we study larger N systems?

2: Stochastic Mean-field: improving the mean-field approximation

Consider an uniform neutrino beam

SMF: random distribution around initial flavor state
— evolve each sample via ordinary mean field (easy!)
— average over trajectories (reproduce entanglement!)
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How do we study larger N systems?

3: Quantum simulation

@ Quantum proposal for two flavors: 1 v <— 1 qubit
exp|—itw.J,| +— R, (2wt)
exp|—itpJ; - Jo] «— SWAPH/2

@ Three flavors? Qutrit hardware: |0),[1),]2)? (Ongoing)
@ Our qubit circuit compiling is state-of-the-art (on Github):

Diagonalize observables Simulate (diag) Hamiltonian
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Summary

@ Interacting neutrino problem cast in a many-body perspective

@ Additions to a MFT approach measured by quantum
entanglement

@ Various directions to quantify this entanglement and predict
effects in SNe

19 /21



Some Important Considerations
Future Work

e Tamborra & Shalgar (2023): Dependence upon v wave packet
size

e Cirigliano, Sen, & Yamauchi (2024): Non-forward scattering

20/ 21
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