Magnetar Giant Flares: a new site for the r-process

ULTRASAT

Brian Metzger

with **Jakub Cehula**, Todd Thompson, **Ani Patel**, Jared Goldberg, Mathieu Renzo

Rapid Neutron Capture Nucleosynthesis: Cosmic Alchemy

"Iron" Seed 26 protons, 30 neutrons

"Gold" 79 protons, 118 neutrons

Animation: Courtesy A. Frebel

Key: high neutron/seed ratio

Astrophysical sites of the r-process

"normal" Supernovae (ν-driven proto-NS wind)

Neuton Star Mergers (e.g. Lattimer & Schramm 74; Freiburghaus+99)

Magneto-rotational Supernova (e.g. Nishimura+06, Burrows+07, Winteler+12, Mosta+14) + Magnetized Proto-NS Wind (e.g. Thompson+04, Metzger+07, Desai+23, Prasanna+23)

"Collapsars" (BH accretion disk winds) (e.g. Pruet+05, Surman+06, Siegel+19,)

Astrophysical sites of the r-process

"normal" Supernovae (ν-driven proto-NS wind)

Neuton Star Mergers (e.g. Lattimer & Schramm 74; Freiburghaus+99)

Magneto-rotational Supernova (e.g. Nishimura+06, Burrows+07, Winteler+12, Mosta+14) + Magnetized Proto-NS Wind (e.g. Thompson+04, Metzger+07, Desai+23, Prasanna+23)

"Collapsars" (BH accretion disk winds) (e.g. Pruet+05, Surman+06, Siegel+19,)

Are there disk outflows and are they neutron-rich? (promising! Issa+24, in prep)

Magnetar Giant Flares

Magnetars: neutron stars powered by magnetic energy (Duncan & Thompson 93)

$$
E_{\rm mag} \sim 3 \times 10^{49} {\rm erg} \left(\frac{B}{10^{16} {\rm G}} \right)^2
$$

Constitute ~10-60% of neutron star birth (e.g. Beniamini+19)

Giant flares (1979, 1998, 2004) release $^{\sim}10^{44-46}$ erg each

GF detectable in Milky Way and nearby galaxies as short "gamma-ray bursts"

Rates: every decade-century

Recent:

Nov. 2023 giant flare in M82 (3.7 Mpc)

radio afterglow: evidence for baryon ejection

Dynamics of baryon ejection

Cehula, Thompson, BDM 24

1D hydrodynamic simulations

Jakub Cehula

Unbound Ejecta Properties

Parameter Study

Flare "strength"

Ejecta mass Ejecta mass

five stages of a hot r-process

- 1. Dynamical ejection $(t \sim R_{\rm g}/v \lesssim {\rm ms}, T \gtrsim 3$ MeV, $\rho \gtrsim 10^{10}$ g/cc)
- 2. Weak freeze-out $(t \sim ms, T \gtrsim MeV)$ Fixes Y_e following the e^{\pm}/ν captures above
- 3. Alpha formation $(t \sim 1 100 \text{ ms}, T \lesssim 1 0.5 \text{ MeV})$

 $2n+2p \rightarrow \alpha + \gamma$

is usually efficient (NSE) at capturing all the protons,

 $X_{\alpha} \simeq 2Y_{\alpha}$: $X_{\alpha} = 1 - X_{\alpha}$

4. Seed formation $(t \sim 1 - 100 \text{ ms}, T \sim 0.5 - 0.1 \text{ MeV})$, Neutron-aided 4-body "triple-alpha" reaction:

 $\alpha(\alpha n, \gamma)^9$ Be $(\alpha, n)^{12}$ C

Additional α -captures rapidly build seed nuclei

$$
{}^{12}\text{C} + \text{N}\alpha \rightarrow \{A_{\text{seed}} \sim 80 - 100, \bar{Z}_{\text{seed}} \approx 32 - 36\}
$$

5. **R-Process** $(t \sim 0.1 - 1 \text{ s}, T \sim 0.2 - 0.01 \text{ MeV}).$

$$
(Z, A) + n \to (Z + 1, A + 1) + e^- + \bar{\nu}_e + \gamma,
$$

Maximum isotope reached A_{max} depends on neutron-to-seed ratio,

$$
\frac{n}{s}\equiv \frac{Y_n}{Y_s},
$$

$$
\{Y_e, S \leftrightarrow \rho(T), t_{\exp} \leftrightarrow v\},\
$$

- 1. Electron fraction
- 2. Entropy
- 3. Expansion time

Alpha-rich freeze-out

mini-kilonova ("nova brevis")

$$
t_{\rm pk} \approx \sqrt{\frac{M_{\rm ej} \kappa}{4 \pi v_{\rm ej} c}} \approx 300 \text{ s} \left(\frac{M_{\rm ej}}{10^{26} \text{ g}}\right)^{1/2} \left(\frac{v_{\rm ej}}{0.3c}\right)^{-1/2} \left(\frac{\kappa}{3 \text{ cm}^2 \text{ g}^{-1}}\right)^{1/2}
$$

 $L_{\rm pk} \approx 10^{39} \text{ ergs s}^{-1} \left(\frac{M_{\rm ej}}{10^{26} \text{ g}}\right)^{0.35} \left(\frac{v_{\rm ej}}{0.3c}\right)^{0.65} \left(\frac{\kappa}{3 \text{ cm}^2 \text{ g}^{-1}}\right)^{-0.65}$

slews in <15 min to external (e.g. gamma-ray) trigger

Magneto-ionic environs of a fast radio burst

years since explosion

Magnetar GF contribute <~1-10% of Galactic r-process (but can occur at low metallicity)

Conclusions

- Magnetar giant flares: the most powerful non-cataclysmic neutron star outbursts
- Both direct (radio afterglow) and indirect (FRB rotation measures) evidence supports substantial baryon ejection during GFs.
- We model the GF in one-dimension as the sudden application of a high-pressure shell above the neutron star surface, which drives a shock wave into the crust.
- The heated crustal material is dissociated into free nucleons, which can undergo nucleosynthesis as it decompresses into space.
- Shock heating raises the entropy of the unbound ejecta layers sufficiently high to enable an alpha-rich freeze-out, thus permitting a heavy r-process.
- Some ejecta layers expand so quickly the r-process itself freezes out with a substantial free neutron abundance.
- Radioactive decay powers a brief optical/UV transient ("nova brevis"), akin to a scaled-down kilonova, which may be detected with UV satellites like ULTRASAT.
- Much of the r-process may not come from rare GF like those from magnetars in our Galaxy, but the extremely active magnetars which power fast radio bursts.
- The total GF r-process yields is likely not sufficient to contribute most of Galactic r-process, but could contribute significantly at low metallicity.

 $t = 0.0 \,\mu s$, $log(M_{ej}/g) = 19.35$

