SIMP Miracles and WIMP Dead Ends: Navigating the Freeze-Out of MeV Dark Matter

Josef Pradler

N3AS Seminar Oct 29 2024

AUSTRIAN ACADEMY OF SCIENCES

... in the formation of large scale structure such as galaxies and clusters of galaxies

Dark Matter is key...

explaining the origin of structure

 $\ddot{\delta} + [\text{Pressure} - \text{Gravity}] \delta = 0$

baryons fall into the potential wells created by dark matter.

Dark Matter is key...

Outline

1 SIMPs

On the freeze-out of strongly interacting dark matter candidates (SIMPs)

=> SIMP miracles revived

arXiv:2401.12283 (PRL)

w/ Xiaoyong Chu, Marco Nikolic

2 WIMPs

On the freeze-out of weakly interacting dark matter

=> what is the minimal thermal DM mass? The WIMP dead end.

arXiv:2205.05714 (PRD) arXiv:2310.06611 (PRD)

w/ Xiaoyong Chu, Jui-Lin Kuo

Motivation for SIMPs

Small scale structure problems in LCDM (core-cusp, diversity)

self-interactions lead to heat transfer in the halo, diversifying the halo density in the central regions of galaxies

Weakly interacting massive particles (WIMPs)

Freeze out when 2 -> 2 annihilation rate ~ Hubble rate

WIMPs

"Weakly Interacting Massive Particles"

Freeze out when 2 -> 2 annihilation rate ~ Hubble rate

SIMPs

"Strongly Interacting Massive Particles"

Freeze out when 3 -> 2 annihilation rate ~ Hubble rate

$$\Gamma_{3\to 2}(T_f) = \langle \sigma v^2 \rangle n_\pi^2(T_f) \sim H(T_f)$$

$$\langle \sigma v^2 \rangle \sim \frac{\alpha^3}{m_\chi^5}$$

collision term or

"cross section" of mass dimension -5

$$m_{\pi} \sim \alpha (T_{eq}^2 M_P)^{1/3} \sim \alpha (100 \text{ MeV})$$

=> points to strong interactions

=> MeV scale DM

[Hochberg et al 2015, ...]

A SIMP miracle?

Right relic density AND interesting self-scattering cross section?

[Hansen, Langaeble, Sannino 2016]

tension in the joint "miracle" solution

WIMPs vs. SIMPs

$$m_{\chi} \sim \frac{\alpha}{\sqrt{x_f}} \sqrt{T_{eq} M_P} \sim \alpha (30 \text{ TeV})$$

$$\begin{array}{c} \chi \\ \chi \end{array} \\ \begin{array}{c} \text{SM} \\ \chi \end{array} \\ \end{array}$$

what if we make a stable bound state? X

$$m_{\pi} \sim \alpha (T_{eq}^2 M_P)^{1/3} \sim \alpha (100 \text{ MeV})$$

SIMP prototype model

Dark Matter as Goldstone bosons of a confining dark sector

For example, two flavor $N_f=2,\ Sp(4)_c$ gauge group

Kulkarni, Maas, Mee, Nikolic, JP, Zierler SciPost Phys. 14 (2023) 3, 044,

$$\mathcal{L}^{\mathrm{UV}} = -\frac{1}{2} \operatorname{Tr} \left[G_{\mu\nu} G^{\mu\nu} \right] + \bar{u} \left(\gamma_{\mu} D_{\mu} + m_{u} \right) u + \bar{d} \left(\gamma_{\mu} D_{\mu} + m_{d} \right) d$$

Quarks are in pseudoreal representation of color group $(\tau^a)^T = S \tau^a S$

Flavor:

$$\Psi \equiv \begin{pmatrix} u_L \\ d_L \\ \sigma_2 S u_R^* \\ \sigma_2 S d_R^* \end{pmatrix} \implies \mathcal{L}_{kin}^{UV,f} = i \Psi^{\dagger} \bar{\sigma}_{\mu} D^{\mu} \Psi. \implies \mathsf{SU}(4)$$

$$\bar{u}u + \bar{d}d = -\frac{1}{2}\Psi^T \sigma_2 SE\Psi + \text{ h.c.} \qquad (m_u = m_d)$$
$$E = \begin{pmatrix} 0 & \mathbb{1}_{N_f} \\ -\mathbb{1}_{N_f} & 0 \end{pmatrix} \qquad U^T EU = E \qquad => \mathsf{Sp}(4)$$

Flavor breaking pattern

QCD-like

this example

COMPLEX **PSEUDOREAL** $U(2) \times U(2)$ U(4)axial anomaly $m_u = m_d = 0$ $m_u = m_d = 0$ | axial anomaly $SU(2) \times SU(2) \times U(1)$ SU(4) $m_u = m_d = 0$ | chiral symmetry breaking chiral symmetry breaking $m_u = m_d = 0$ and/or explicit breaking $\prod m_u = m_d \neq 0$ $m_u = m_d \neq 0 \mid and/or$ explicit breaking $SU(2) \times U(1)$ Sp(4)5 broken generators $m_u \neq m_d$ strong isospin breaking strong isospin breaking $m_u \neq m_d$ $U(1) \times U(1)$ $SU(2) \times SU(2)$

=> 5 Goldstone bosons

Meson multiplet structure

$$\pi = \sum_{i=1,\dots,5} \pi_a T^a = \sum_{N=A,\dots,E} \pi_N T^N = \frac{1}{2} \begin{pmatrix} \pi^C & \pi^B & 0 & \pi^E \\ \pi^A & -\pi^C & -\pi^E & 0 \\ 0 & -\pi^D & \pi^C & \pi^A \\ \pi^D & 0 & \pi^B & -\pi^C \end{pmatrix}$$

=> 5 Goldstone bosons

Prototype SIMP theory

Low energy description

Wess-Zumino-Witten term when coset space has non-trivial fifth homotopy group

$$\mathcal{L}_{\text{int}}^{\text{odd}} = \frac{2N_c}{15\pi^2 f_\pi^5} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr} \left[\pi \partial_\mu \pi \partial_\nu \pi \partial_\rho \pi \partial_\sigma \pi \right] \cdot \quad \text{odd-numbered}$$

WIMPs vs. SIMPs

$$m_{\chi} \sim \frac{\alpha}{\sqrt{x_f}} \sqrt{T_{eq} M_P} \sim \alpha (30 \text{ TeV})$$

$$\begin{array}{c} \chi \\ \chi \end{array} \\ \begin{array}{c} \text{SM} \\ \chi \end{array} \\ \end{array}$$

what if we make a stable bound state? X

$$m_{\pi} \sim \alpha (T_{eq}^2 M_P)^{1/3} \sim \alpha (100 \text{ MeV})$$

SIMP bound states

$X = [\pi \pi]$ must exist

• considering SIMPs as pseudo-Nambu-Goldstone bosons of a strongly interacting theory we require a molecular state with negative binding energy such that $m_X \le 2m_{\pi}$

QCD with $m_q \ll \Lambda_{\rm strong}$ has a mass gap, hence not prospective

=> better consider a dark confining theory with $m_q \sim \Lambda_{
m strong}$ and

=> make SIMP-onium

=> or take $m_q \gg \Lambda_{\text{strong}}$: Glueball dark matter $J^{PC} = 0^{++}$ or 0^{-+} e.g. [Soni, Zhang, 2016]

$$V(G) = rac{1}{4} rac{m_G^2}{\Lambda_G^2} igg(G^4 \ln igg| rac{G}{\Lambda_G} igg| - rac{G^4}{4} igg)$$

- => yields odd G³ interactions
- => 3-to-2 SIMP mechanism
- => make Glueball-onium for G-bound states see [Giacosa, Pilloni, Trotti 2021]
- one may also use a Yukawa force with sizable coupling; options exist

e.g. [G. Kribs and E. Neil 2016, Y. Tsai, R. McGehee, H.Murayama 2020, R. Mahbubani, M. Redi and A. Tesi 2020,].

Catalysis

Probability of two particles finding each other in a bound state vs. as free particles

$$\frac{n_X |\psi(0)|^2}{n_\pi^2} \approx 2\sqrt{2}\pi^{3/2} x_{\rm f}^{3/2} e^{\kappa x_{\rm f}} \frac{|\psi(0)|^2}{m_\pi^3}$$
$$\approx 10^3 \qquad O(1)$$
$$x_{\rm f} = 20$$
$$\kappa \equiv E_B / m_\pi \sim 0.1$$

WZW-free SIMP mechanism

self-depletion of mass density in the early Universe possible with even-numbered interactions only!

=> relaxes the requirement on the topological structure of the theory

guaranteed X formation

Comparing the rates of X-formation to free

$$\frac{\Gamma_{3\pi\to X\pi}}{\Gamma_{3\pi\to 2\pi}} = \frac{\langle \sigma_{3\pi\to X\pi} v^2 \rangle}{\langle \sigma_{3\pi\to 2\pi} v^2 \rangle} \approx \frac{|\psi(0)|^2 f_\pi^2}{m_\pi^5} x_{\rm f}^2. \qquad \text{ea}$$

easily exceeds unity

Expectations/guesses for $|\psi(0)|^2$

In analogy to QED, one may posit a scale a_B "Bohr radius"

For perturbative couplings α $a_B \sim 1/(\alpha \mu) = 2/(\alpha m_\pi) \geq 2/m_\pi$

Radial profiles (for n=1)

$$\begin{split} R_s(r) &\simeq R_s(0) \, e^{-(r/2a_B)}, \qquad R_p(r) \simeq R'_p(0) \, r \, e^{-(r/2a_B)} \,, \\ \text{s-wave (I=0)} \qquad \qquad \text{p-wave (I=1)} \\ R_s(0) &= \frac{1}{\sqrt{2a_B^3}} \sim 0.25 (\alpha m_\pi)^{3/2}, \quad R'_p(0) = \frac{1}{\sqrt{24a_B^5}} \sim 0.035 (\alpha m_\pi)^{5/2} \end{split}$$

 $\Rightarrow |\psi(0)|/m_{\pi}^{3/2} \sim 0.9 \alpha^{3/2}$

Working hypothesis:

X is a weakly bound (non-relativistic) state, such as a hadronic molecule

Bethe-Salpeter wave functions => non-relativistic Schroedinger equation

[e.g. K.Petraki, M.Postma, J.de Vries 2016, ...]

In the non-relativistic limit, one obtains a t-channel **resonance**:

$$\frac{s}{t - m_{\pi}^2} \propto \frac{m_{\pi}^2}{m_X^2 - 4m_{\pi}^2} \propto \frac{m_{\pi}}{E_B} \gg 1$$

Total mass density (free and bound) reduces

mass-reduction rate

$$\Gamma_{XX \to \pi\pi} = \frac{n_X^2 \left\langle \sigma_{XX \to \pi\pi} v \right\rangle}{n_\pi}$$

In practice, 2X→2 π changes $\pi\text{-abundance}$ fast enough when $\Gamma_{XX\to\pi\pi}>H$

Cross section is s-wave

$$\langle \sigma_{XX\to\pi\pi} v \rangle \simeq \frac{2529757}{424673280\sqrt{3}\pi^3} \frac{R_S^4(0)}{f_\pi^8}$$

$$Y_{\pi,X} = Y_{\pi,X}^{\text{eq}}$$

Bound-state formation maintains

Saha equilibrium between X and pi

$$Y_X = \frac{Y_\pi^2 Y_X^{\text{eq}}}{\left(Y_\pi^{\text{eq}}\right)^2}$$

N3AS Seminar

$$Y_{\pi}^{-3}(x_2) \simeq \frac{256\sqrt{2}\pi^8 g_*^{5/2} m_{\pi} M_P \left\langle \sigma_{XX \to \pi\pi} v \right\rangle}{6075\sqrt{5}x_2^4} \frac{N_X^2}{N_{\pi}^4} \times \left[8\left(\kappa x_2\right)^4 \operatorname{Ei}\left(2\kappa x_2\right) - e^{2\kappa x_2} \left(3 + 2\kappa x_2 + 2\kappa^2 x_2^2 + 4\kappa^3 x_2^3\right) \right]$$

Even SIMP miracles are possible!

coincidence of correct relic density + interesting self scattering ballpark

CASE 2: odd-numbered interactions

catalyzed $3 \rightarrow 2$ annihilation

standard WZW annihilation (d-wave)

 $\left\langle \sigma_{3\pi\to 2\pi} v^2 \right\rangle = \frac{\sqrt{5N_c^2 m_\pi^3 T^2}}{12800\pi^5 f_\pi^{10}}$

derivative of radial wave function of X (p-wave)

$$\langle \sigma_{\pi X \to 2\pi} v \rangle = \frac{\sqrt{5}N_c^2 R'(0)^2 m_{\pi}^2}{512\pi^6 f_{\pi}^{10}} T$$

p-wave X are available through collisional excitation

$$\frac{n_{X_P}}{n_{X_S}} = 3e^{-|E_S - E_P|T/m_\pi}$$

CASE 2: odd-numbered interactions

$$\Omega_{\pi}^{\text{odd}} \simeq 0.2 \, \left(\frac{x_1}{20}\right)^{5/4} \left(\frac{e^{-\kappa_P x_1} \, 10^{-3} \, \text{bn/GeV}}{\langle \sigma_{\pi X_P \to \pi \pi} v \rangle / m_{\pi}}\right)^{1/2}$$

CASE 2: odd-numbered interactions

What bound states do

two-body process remains efficient even after pions are frozen out

$$n_X \langle \sigma_{XX \to \pi\pi} v \rangle > H(x_2)$$

Coupling to Standard Model

SIMPs in isolation lead to HOT dark matter (excluded)

SIMPs must come into kinetic equilibrium with the SM plasma (=share the same temperature)

$$\pi \operatorname{SM}_i \to \pi \operatorname{SM}_i$$
 with $\Gamma_{\pi \operatorname{SM}} = \langle \sigma_{\pi \operatorname{SM}} c \rangle n_i > H_i$

=> typically enables $\pi\pi \to \mathrm{SM}_i \overline{\mathrm{SM}}_i$ but OK, because $n_i/n_\pi \gg 1$

HERE: destabilizes the bound state

$$X = [\pi\pi] \to \mathrm{SM}_i \overline{\mathrm{SM}}_i$$

Meta-stability of X

 $X = [\pi\pi] \to \mathrm{SM}_i \overline{\mathrm{SM}}_i$

Noting that $|\psi(0)|^2 v$ has units of particle flux => $\Gamma_X \sim |\psi(0)|^2 (\sigma_{ann} v)$

$$\Gamma_X/H < 1 \qquad => \qquad \sigma_{\rm ann} v \lesssim 10^{-3} {\rm pb} \ x^{-2} \left(\frac{m_{\pi}}{100 \ {\rm MeV}}\right)^2 \frac{{\rm MeV}^3}{|\psi(0)|^2}$$

Taking $\sigma_{\pi SM}c \sim \sigma_{ann}v$, the stability requirement (X lives beyond freeze out) imposes upper limit on the elastic scattering rate that is needed to make Dark Matter "cold".

$$1 \lesssim \frac{\Gamma_{\pi \,\mathrm{SM}}}{H} \lesssim \frac{10^6}{x^3} \left(\frac{m_{\pi}}{100 \,\mathrm{MeV}}\right)^3 \frac{\mathrm{MeV}^3}{|\psi(0)|^2}$$

=> can easily be satisfied: retain kinetic equilibrium while maintaining sufficient longevity of X, paired with sub-Hubble two-body annihilation

=> no escalated model building requirements in comparison to original works on the SIMPs
 => previously explored phenomenology remains in place

X-catalyzed SIMP mechanism

When coupled to SM

additional X formation and breakup reactions may open

=> the detailed balancing condition

$$Y_X = \frac{Y_\pi^2 Y_X^{\text{eq}}}{\left(Y_\pi^{\text{eq}}\right)^2}$$

remains unaltered

=> If the new processes dominate over $3\pi \leftrightarrow \pi X$, detailed balancing retains its validity longer

=> x2 will be larger, and **relic density smaller**

Introduction of **SM-interactions** harbor the potential to make **X-assisted**

freeze-out even more efficient, without jeopardizing the overall picture!

2. WIMP dead end

OR: what is the lightest thermal DM mass?

Chu, Kuo, JP, PRD 2022 Chu, JP PRD 2024

OR: what is the lightest thermal DM mass?

Well known that MeV-DM subject to Neff bound from heating by annihilation

Previous treatments had to assume a branching either into EM-sector OR neutrinos:

Chu, Kuo, JP, PRD 2022 Chu, JP PRD 2024

OR: what is the lightest thermal DM mass?

Well known that MeV-DM subject to Neff bound from heating by annihilation

Previous treatments had to assume a branching either into EM-sector OR neutrinos:

Chu, Kuo, JP, PRD 2022 Chu, JP PRD 2024

OR: what is the lightest thermal DM mass?

Well known that MeV-DM subject to Neff bound from heating by annihilation

In the full picture, joint treatment of the three coupled sectors is necessary

$$\begin{split} \Gamma_{\text{weak}} &\equiv n_e G_F^2 T_{\gamma}^2 ,\\ \Gamma_{\text{ann.}} &\equiv n_{\phi} \langle \sigma_{\text{ann.}} v \rangle ,\\ \Gamma_{\text{exch.},i} &\equiv n_{\phi}^2 \langle \sigma_{\text{ann.},i} v \delta E \rangle / \rho_i ,\\ \Gamma_{\text{scatt.},i} &\equiv n_i \langle \sigma_{\text{scatt.}}^{\phi i} v \rangle . \end{split}$$

Chu, Kuo, JP, PRD 2022 Chu, JP PRD 2024

OR: what is the lightest thermal DM mass?

Well known that MeV-DM subject to Neff bound from heating by annihilation

In the full picture, joint treatment of the three coupled sectors is necessary

Light DM freeze out

Thermal cross section

Example: p-wave annihilation

 $\mathcal{L}_{Z'}^{\text{int}} = g_{\phi}^2 Z'^{\mu} Z'_{\mu} \phi^* \phi - i g_{\phi} Z'^{\mu} (\phi^* \overleftrightarrow{\partial}_{\mu} \phi) - g_l Z'^{\mu} \overline{l} \gamma_{\mu} l \,.$

Light DM freeze out

What is the lightest thermal DM mass?

Example: p-wave annihilation

$$\rho_{\rm rad} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\rm eff}\right] \rho_{\gamma}$$

Evading Neff bound

OR: How low can you go?

Fine-tuned branching into neutrinos evades Neff constraint.

Evading Neff bound

OR: How low can you go?

Summary

Freeze-out of MeV-mass DM candidates

- Small-scale structure problems pertinent to LCDM may be a hint for DM self-interactions, naturally realized in theories with strongly interacting particles (SIMPs)
- When SIMPs regulate their relic abundance in N->2 processes, bound states — should they exist significantly alter the standard picture.
- Even-numbered SIMP-mechanism is possible
- A comprehensive assessment of thermal MeV-scale DM necessitates a three-sector treatment of vastly changing rates => systematic formulation
- nice application for DM affecting 21cm cosmology

Thank you

