The Cosmology of Dark Energy Radiation

Kim V. Berghaus Burke Institute for Theoretical Physics California Institute of Technology Based on Phys. Rev. D 110, 2024 (Berghaus, Karwal, Miranda, Brinckmann) 2404.14341, 2024 (Berghaus, Kable, Miranda) And Phys. Rev. D 104, 2021 with (Graham, Kaplan, Moore, Rajendran)

Introduction

- Dark Radiation
- Dark Energy Radiation
- Cosmological Constraints
- Direct Detection Prospects

Outline

- Dark Radiation
- Dark Energy Radiation
- Cosmological Constraints
- Direct Detection Prospects

Radiation x 10^4

Radiation x 10^4 Matter Dark Energy

11/11/2024 N3AS

Kim V. Berghaus, Caltech

11/11/2024 N3AS

11/11/2024 N3AS

R M Z^3 Ω_i z^4 DE20 DER? Z_*Z_{eq}

Planck 2018 11/11/2024 N3AS

Kim V. Berghaus, Caltech

Pantheon Sample Type 1A supernovae, Scolnic et. al. 2018

11/11/2024 N3AS

11/11/2024 N3AS

Pantheon Sample Type 1A supernovae, Scolnic et. al. 2018

 $d_L(z) = \frac{c (1+z)}{H_0} \int_{-\infty}^{z} dz' (\Omega_m (1+z')^3 + \Omega_{DE}(z))^{-1/2}$

Dark Energy in principle be a general function of redshift z

11/11/2024 N3AS

Pantheon Sample Type 1A supernovae, Scolnic et. al. 2018

 $d_L(z) = \frac{c (1+z)}{H_0} \int_{-\infty}^{z} dz' (\Omega_m (1+z')^3 + \Omega_{DE}(z))^{-1/2}$

Dark Energy in principle be a general function of redshift z

11/11/2024 N3AS

• Recent BAO data shows preference for dynamics

Outline

- Dark Radiation
- Dark Energy Radiation
- Cosmological Constraints
- Direct Detection Prospects

Dark Energy Radiation

 ϕ

$$V(\phi) \qquad \qquad w(z) \approx -1 + \Delta w(z)$$

$$\ddot{\phi} + 3(H + \Upsilon)\dot{\phi} + V' = 0$$

$$\dot{\rho}_{DER} + 4H\rho_{DER} = \Upsilon\dot{\phi}^{2}$$

• Recent BAO data shows
preference for dynamics
• Interesting BSM
phenomenology

Dark Energy Radiation

 ϕ

$$L_{\rm int} = -\frac{\alpha}{16\pi f}\phi \tilde{G}G$$

$$V(\phi) \neq w(z) \approx -1 + \Delta w(z)$$

$$\ddot{\phi} + 3(H + \Upsilon)\dot{\phi} + V' = 0$$

$$\dot{\rho}_{DER} + 4H\rho_{DER} = \Upsilon \dot{\phi}^2$$
• Recent BAO data shows preference for dynamics
• Interesting BSM phenomenology

Dark Energy Radiation

 ϕ

$$L_{\rm int} = -\frac{\alpha}{16\pi f}\phi \tilde{G}G$$

V

dynamics

 ψ

$$V(\phi) \neq w(z) \approx -1 + \Delta w(z)$$

$$\ddot{\phi} + 3(H + \Upsilon)\dot{\phi} + V' = 0$$

$$\dot{\rho}_{DER} + 4H\rho_{DER} = \Upsilon \dot{\phi}^{2}$$
• Recent BAO data shows preference for dynamics preference for dynamics phenomenology

Gauge Axions bosons

 ${g}$

g

 ϕ

Minimal Dark Energy Radiation

∂L	$d \ \partial L$	_ 0
$\frac{\partial \phi}{\partial \phi}$	dt∂φ́	-=0

T > H

 $\Upsilon \propto \alpha^5 \frac{\rho}{2}$

• Couple axion to non-Abelian gauge group $L_{\text{int}} = -\phi_{\frac{\alpha}{16\pi f}} \tilde{G} G$

$$\dot{\phi} + 3H\dot{\phi} + V' = -\left\langle \frac{\alpha}{16\pi f} \tilde{G}G \right\rangle (\phi)$$

$$\left(\frac{\alpha}{16\pi f}\tilde{G}G\right)(\phi) \approx m_{th}^{2}\phi + \Upsilon\dot{\phi} + O(\ddot{\phi})$$

Not allowed by symmetry

Outline

- Dark Radiation
- Dark Energy Radiation
- Cosmological Constraints
- Direct Detection Prospects

Analysis

Implement Dark Energy Radiation in CLASS: $V(\phi) = C\phi$

Dark Energy Radiation (background + linear perturbations)

- minimal DER: $\Upsilon \propto \alpha^5 \frac{\rho_{\text{DER}}^{3/4}}{f^2}$
- toy model: Υ = constant
- Quintessence $\Upsilon = 0$

Data sets:

- Planck 2018 CMB (TTTEEE)
- Baryon acoustic oscillations (BOSS DR12, SDSS MGS DR7 and DR12)
- Pantheon Supernovae sample

Forecasts:

• Simons Observatory projections/Roman (WFIRST) forecasts up to z = 3

11/11/2024 N3AS

2311.08638, Berghaus, Karwal, Miranda, Brinckmann

$$w(z) = w_0 + \left(1 - \frac{1}{1+z}\right) w_a$$

Impact of DESI BAO measurements on results

Toy DER

The best fit is $\Omega_{der} \cong 3\%$

 2σ upper limit is $\Omega_{der} \cong 3\%$

Outline

- Dark Radiation
- Dark Energy Radiation
- Cosmological Constraints
- Direct Detection Prospects

Direct Detection Prospects for Neutrinos

Dark Energy Radiation can thermalize a relativistic Standard Model neutrino

$$L = \frac{1}{f_{\nu_R}} G^a_{\mu\nu} \psi^a \sigma^{\mu\nu} \nu_R - y h \bar{\nu}_L \nu_R - \frac{1}{2} m \bar{\nu}_R \nu_R^c + h.c.$$

11/11/2024 N3AS

Kim V. Berghaus, Caltech

Direct Detection Prospects for Neutrinos

Dark Energy Radiation can thermalize a relativistic Standard Model neutrino

$$L = \frac{1}{f_{\nu_R}} G^a_{\mu\nu} \psi^a \sigma^{\mu\nu} \nu_R - y h \bar{\nu}_L \nu_R - \frac{1}{2} m \bar{\nu}_R \nu_R^c + h.c. \qquad n_0 = 0.2 T_{\nu,0}^3 = 102 \text{ cm}^{-3}$$

$$T_{\nu,0} = 1.95 \text{ K} (0.15 \text{ meV})$$

$$g \underbrace{\downarrow \downarrow}_{Q} \underbrace{\downarrow}_{Q} \underbrace{\downarrow}_{$$

11/11/2024 N3AS

Ptolemy collaboration JCAP 07 (2019) 047

Neutrino capture with tritium $v_e + {}^{3}H \rightarrow {}^{3}He + e^{-}$

Beta decay

$$^{3}H \rightarrow ^{3}He + e^{-} + \bar{\nu}_{e}$$

Ptolemy predicted to see ~ 4 events with 100 g/yr detector

Ptolemy collaboration JCAP 07 (2019) 047

Neutrino capture with tritium

$$\nu_e + {}^3H \rightarrow {}^3He + e^-$$

Beta decay

$$^{3}H \rightarrow ~^{3}He + e^{-} + \bar{\nu}_{e}$$

Ptolemy predicted to see ~ 4 events with 100 g/yr detector

Sensitive to T instead of m if v relativistic

Ptolemy collaboration JCAP 07 (2019) 047

Sensitive to T instead of m if ν relativistic

Neutrino capture with tritium $v_e + {}^{3}H \rightarrow {}^{3}He + e^{-}$ Beta decay

$$^{3}H \rightarrow ^{3}He + e^{-} + \bar{\nu}_{e}$$

Ptolemy predicted to see ~ 4 events with 100 g/yr detector

DER predicts ~ 200 events but resolution of $\Delta \leq 10$ meV necessary

	NO			IO		
$\Delta [\mathrm{meV}]$	S	В	S/B	S	В	S/B
2	187	22	7	6	0.7	9
4	71	27	2.7	2.3	0.9	2.7
6	12	7	1.7	0.40	0.23	1.7
8	1	0.7	1.4	0.03	0.02	1.4
10	0.04	0.03	1.3	0.001	0.0007	1.9

Table I. Signal and background events for a fictional 100g tritium detector with experimental resolution Δ for a normal (NO) and inverted (IO) neutrino mass hierachy.

2311.08638 , Berghaus, Karwal, Miranda, Brinckmann

	NO			IO		
$\Delta [\mathrm{meV}]$	S	В	S/B	S	В	S/B
2	187	22	7	6	0.7	9
4	71	27	2.7	2.3	0.9	2.7
6	12	7	1.7	0.40	0.23	1.7
8	1	0.7	1.4	0.03	0.02	1.4
10	0.04	0.03	1.3	0.001	0.0007	1.9

Table I. Signal and background events for a fictional 100g tritium detector with experimental resolution Δ for a normal (NO) and inverted (IO) neutrino mass hierachy.

2311.08638, Berghaus, Karwal, Miranda, Brinckmann

Heisenberg uncertainty principle Limit on Δ of 50 meV?

	NO			IO		
$\Delta [\mathrm{meV}]$	S	В	S/B	S	В	S/B
2	187	22	7	6	0.7	9
4	71	27	2.7	2.3	0.9	2.7
6	12	7	1.7	0.40	0.23	1.7
8	1	0.7	1.4	0.03	0.02	1.4
10	0.04	0.03	1.3	0.001	0.0007	1.9

Table I. Signal and background events for a fictional 100g tritium detector with experimental resolution Δ for a normal (NO) and inverted (IO) neutrino mass hierachy.

2311.08638, Berghaus, Karwal, Miranda, Brinckmann

Heisenberg uncertainty principle Limit on Δ of 50 meV?

Possible solutions 5 meV (spin polarized liquid tritium?) Different nuclei? Subject to R&D but very challenging

Direct Detection Prospects for Axions

$$T_{\rm der} < 0.84 \left(\frac{7}{g_*}\right)^{1/4} \rm meV$$

$$\frac{d\Omega_{\rm der}^{\phi}}{d\omega} = \frac{1}{2\pi^2} \frac{\omega^3}{e^{\frac{\omega}{T_{der}}} - 1}$$

Thermal Distribution

Direct Detection Prospects for Axions

$$T_{\rm der} < 0.84 \, \left(\frac{7}{g_*}\right)^{1/4} \, \rm meV$$

$$\frac{d\Omega_{\rm der}^{\phi}}{d\omega} = \frac{1}{2\pi^2} \frac{\omega^3}{e^{\frac{\omega}{T_{der}}} - 1}$$

Thermal Distribution

Detecting a cosmic axion background

Dror, Murayama, Rodd Phys. Rev. D 103, 115004 (2021)

• Dark Matter axion experiments have sensitivity to relativistic axion background

$$L = -\frac{g_{\phi\gamma\gamma}}{4}\phi\tilde{F}_{\mu\nu}F^{\mu\nu}$$

$$\frac{\rho_{der}^{\phi}}{\rho_{DM}} = R_{bw}R_{ce} \left(\frac{g_{\phi\gamma\gamma}^{lim}}{g_{\phi\gamma\gamma}}\right)^{2}$$

bandwidth

Direct Detection Prospects for Axions

Detecting a cosmic axion background

Dror, Murayama, Rodd Phys. Rev. D 103, 115004 (2021)

• Dark Matter axion experiments have sensitivity to relativistic axion background

$$L = -\frac{g_{\phi\gamma\gamma}}{4}\phi\tilde{F}_{\mu\nu}F^{\mu\nu}$$

coresponding to $\Delta N_{eff} < 0.5$

bandwidth

collection efficiency

A background of dark photons

Dark Energy Radiation can contain dark photons

• Charge fermions under dark U(1)

• Couple axion to dark U(1) $L \supset \frac{\phi}{f} \tilde{F}_{\mu\nu}' F^{\mu\nu'}$ Dark photons can have small mixing with SM $L \supset \frac{\kappa}{2} F_{\mu\nu} F^{\mu\nu'} + \frac{1}{2} m_{A'}^2 A'_{\mu} A^{\mu'}$

The LAte Dark Energy RA experiment (LADERA)

- Highly reflective shielded box
- Single photon counting in THz regime (QCD detectors)
- Protoype already running at JPL run by Aaron Chou and Pierre Echternach

2311.08638, Berghaus, Karwal, Miranda, Brinckmann

Conclusions

- Dark Energy Radiation could make up 3-9% of the Universe
- The dark temperature exceeds the CMB by up to a factor of 5
- Direct detection prospects are challenging but offer additional benchmarks towards sensitivity to relic backgrounds
- Axion and neutrino signals out of reach with current technology
- Dark photon signal sensitive to viable parameter space
- Collaboration with LADERA in progress
- Exciting time for dark energy, lots of incoming data

Thank you!