Nucleosynthesis and Galactic Chemical Evolution

Yong-Zhong Qian University of Minnesota

Third Santa Cruz School on Multi-Messenger Astrophysics University of California, Santa Cruz July 16 & 17, 2024

PHYSICS FRONTIER CENTER

Outline (7/16 & 7/17)

- I. Overview of nucleosynthesis
- 2. Stellar Evolution & Nucleosynthesis
- 3. Cosmological Structure Formation
 - 4. Galactic Chemical Evolution

Textbooks

Clayton: Principles of Stellar Evolution & Nucleosynthesis Arnett: Supernovae & Nucleosynthesis Pagel: Nucleosynthesis & Chemical Evolution of Galaxies

Periodic Table of Elements

Fermilab 95-759

Standard Model of Particle Physics & Life of a Baryon: Big Bang Nucleosynthesis

$$\frac{n}{p} = \exp\left(-\frac{M_n - M_p}{T}\right) < 1$$

Big Bang: 75% H + 25% He (by mass)

Sun: 71.1% H + 27.4% He +1.5% "Metals"

$$p^{"} \rightarrow n^{"} + e^{+} + \nu_{e}$$

$$e^{-} + p^{"} \rightarrow n^{"} + \nu_{e}$$

$$\bar{\nu}_{e} + p^{"} \rightarrow n^{"} + e^{+}$$

Cosmic Abundances

slow (s) and rapid (r) neutron capture processes

Solar Neutrinos (I)

Solar Neutrinos (2)

~99% of energy production

~I% of energy production

Solar, atmospheric, reactor, & accelerator neutrino experiments

fractional flavour content

s-process in low- & intermediate-mass stars $3 {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$ $^{12}C + p \rightarrow ^{13}N + \gamma$ $^{13}N \rightarrow ^{13}C + e^+ + \nu_e$ $^{13}\text{C} + {}^{4}\text{He} \rightarrow {}^{16}\text{O} + n$ $n + {}^{56}\text{Fe} \rightarrow s\text{-process nuclei}$

$$4 \, {}^{4}\text{He} + p \rightarrow n + e^{+} + \nu_{e} + {}^{16}\text{O}$$

Evidence for Stellar s-Process Nucleosynthesis discovery of Tc spectral lines in stars by Merrill in 1952 Tc has no stable isotopes; the half-lives of the longest-lived isotopes are:

 2.6×10^6 , 4.2×10^6 , 2.1×10^5 yr for ${}^{97}\text{Tc}$, ${}^{98}\text{Tc}$, ${}^{99}\text{Tc}$

Type Ia Supernovae: Accreting and Merging White Dwarfs

Simple description of stellar structure

$$\frac{dP}{dr} = -\frac{Gm(r)\rho(r)}{r^2}$$
$$\int_0^R \frac{dP}{dr} 4\pi r^3 dr = -\int_0^R \frac{Gm(r)\rho(r)}{r^2} 4\pi r^3 dr$$
$$-3\int_0^R P(r)4\pi r^2 dr = -\int_0^R \frac{Gm(r)\rho(r)}{r} 4\pi r^2 dr$$
$$\frac{1}{3}(\gamma - 1)E_K = E_G \Rightarrow E_K = -\frac{E_G}{3(\gamma - 1)}$$
$$P = (\gamma - 1)\mathcal{E}_K = \begin{cases} (2/3)\mathcal{E}_K, & \gamma = 5/3 \text{ (NR)} \\ (1/3)\mathcal{E}_K, & \gamma = 4/3 \text{ (ER)} \end{cases}$$
$$E_{\text{tot}} = E_K + E_G = \frac{3\gamma - 4}{3(\gamma - 1)}E_G$$

Virial theorem for a contracting gas cloud

$$T_c + \frac{\hbar^2}{2m_e d^2} \sim \frac{GMm_p}{R}, \ \left(\frac{M}{m_p}\right) d^3 \sim R^3$$
$$T_c \sim \frac{GMm_p}{R} - \frac{\hbar^2}{2m_e} \left(\frac{M}{m_p}\right)^{2/3} \frac{1}{R^2} \Rightarrow T_{c,\max} \propto M^{4/3}$$

massive stars reach much higher temperatures during contraction

before degeneracy sets in:
$$T_c \propto \frac{M}{R}$$
, $\rho_c \propto \frac{M}{R^3} \Rightarrow \frac{T_c^3}{\rho_c} \propto M^2$

radiation pressure becomes important for $M \gtrsim 10 M_{\odot}$

$$E_{\text{tot}} = \frac{3\gamma - 4}{3(\gamma - 1)} E_G \sim -\frac{GM^2}{R} \text{ for } \gamma > \frac{4}{3}$$

Stability of nuclear burning

Nuclear burning stages

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
н	He	¹⁴ N	0.02	10 ⁷	4 H → 4He
He 🖌	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ → ¹² C ¹² C(α,γ) ¹⁶ O
C	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	²⁰ Ne(γ,α) ¹⁶ O ²⁰ Ne(α,γ) ²⁴ Mg
0	Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si,S	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

Supernovae as a neutrino phenomenon

$$e^+ + e^- \to \nu + \bar{\nu}$$

$$N + N \to N + N + \nu + \bar{\nu}$$

 $\frac{GM^2}{R_{\rm NS}} \sim 3 \times 10^{53} \ {\rm erg}$

 $\Rightarrow \nu_e, \ \bar{\nu}_e, \ \nu_\mu, \ \bar{\nu}_\mu, \ \nu_\tau, \ \bar{\nu}_\tau$

neutrino processes in typical core-collapse supernovae

neutrino interactions & oscillations

r-process in ejecta from neutron star merger

Periodic Table of Elements

THE SOLAR SYSTEM 8,700,000,000 years After big bang

Hierarchical Structure Formation

Merger Tree

Galaxy formation with gas dynamics

Life Cycle of Interstellar Medium

Type la SNe

SNe Ia: Accreting and Merging White Dwarfs

Neutron Star Mergers ~100 Myr

Outline (7/16 & 7/17)

- I. Overview of nucleosynthesis
 - 2. Big Bang Nucleosynthesis
 - 3. r-Process Nucleosynthesis
- 4. Neutrino-induced Nucleosynthesis
- 5. Cosmological Structure Formation
 - 6. Galactic Chemical Evolution

Textbooks

Clayton: Principles of Stellar Evolution & Nucleosynthesis Arnett: Supernovae & Nucleosynthesis Pagel: Nucleosynthesis & Chemical Evolution of Galaxies

Basics of Big Bang Nucleosynthesis

initial state (T > 1 MeV): n, p

$$X_n + X_p = 1 \Rightarrow \text{need } n/p$$

rate of change in abundance:

$$\frac{dY_i}{dt} = P(t) - D(t)Y_i, \ Y_i = \frac{X_i}{A_i}, \ n_i = \rho_b N_A Y_i$$

 $\begin{array}{l} P(t): \text{ production rate} \\ D(t): \text{ destruction rate} \end{array} \right\} \text{ both depend on } T(t) \text{ and } \rho_b(t) \end{array}$

T(t) specified by dynamics of expansion $\rho_b(t)$ specified by conservation of entropy per baryon \ldots T^3 \ldots n_{γ}

$$s \propto g_{\text{eff}}^*(t) \frac{1}{\rho_b} \propto g_{\text{eff}}^*(t) \frac{1}{n_b} = \text{const.}$$

baryon-to-photon ratio: $\eta = \frac{n_{b,0}}{n_{\gamma,0}} \Rightarrow s \approx \frac{3.6}{\eta}$

entropy conservation \Rightarrow evolution of $\rho_{\rm rel}$ at 100 > T > 1 MeV $TS = E + PV - \mu N \Rightarrow S = \frac{E + PV - \mu N}{T}$ fully relativistic: $S_{\rm rel} = \frac{\rho_{\rm rel}V + (\rho_{\rm rel}/3)V}{T} \propto g_{\rm eff}T(t)^3 R(t)^3$ $g_{\text{eff}} = \text{const.} \Rightarrow T(t) \propto R(t)^{-1}, \ \dot{T}/T = -\dot{R}/R$ $\left(\frac{\dot{R}}{R}\right)^{2} = \left(\frac{\dot{T}}{T}\right)^{2} = \frac{8\pi}{3}G\rho_{\rm rel} = \left(\frac{8\pi}{3}G\right)g_{\rm eff}\frac{\pi^{2}}{15}T^{4}$ $T \to \infty \text{ as } t \to 0 \Rightarrow \frac{\dot{T}}{T} = -\sqrt{\frac{8\pi^3}{45}}g_{\text{eff}}GT^4$ $t \approx \frac{1}{2} \sqrt{\frac{45}{8\pi^3}} \frac{1}{\sqrt{a_{\pi}C}} \frac{1}{T^2} = \frac{1.71}{\sqrt{a_{\pi}C}} \left(\frac{\text{MeV}}{T}\right)^2 \text{ s}$ $N_{\nu} = 3 \Rightarrow g_{\text{eff}} = \frac{43}{8}, \ t \approx 0.74 \left(\frac{\text{MeV}}{T}\right)^2 \text{ s}$

BBN and Neutrinos

freeze-out of $n/p: \nu_e + n \rightleftharpoons p + e^-, \ \bar{\nu}_e + p \rightleftharpoons n + e^+$ $\sigma_{\nu_e n} \approx \frac{G_F^2}{\tau} \cos^2 \theta_C (f^2 + 3g^2) (E_{\nu_e} + \Delta)^2$ $\sigma_{\bar{\nu}_e p} \approx \frac{G_F^2}{\pi} \cos^2 \theta_C (f^2 + 3g^2) (E_{\bar{\nu}_e} - \Delta)^2$ $\cos^2 \theta_C = 0.95, \ f = 1, \ g = 1.26, \ \Delta = M_n - M_p = 1.293 \text{ MeV}$ rate per nucleon: $\lambda_{\nu N} \approx \frac{4\pi}{(2\pi)^3} \int_0^\infty \frac{\sigma_{\nu N} E_{\nu}^2}{\exp(E_{\nu}/T) + 1} dE_{\nu}$ $\approx 0.4 \left(\frac{T}{\text{MeV}}\right)^{5} \text{s}^{-1}$ $\int_{t_{\rm FO}}^{\infty} \lambda_{\nu N} dt \sim \int_{0}^{T_{\rm FO}} 0.4 \left(\frac{T}{\rm MeV}\right)^5 \times 2 \times 0.74 \left(\frac{\rm MeV}{T}\right)^3 dT$ ~ $0.2 \left(\frac{T_{\rm FO}}{\rm MeV}\right)^3 \sim 1 \Rightarrow T_{\rm FO} \sim 1.7 \,\,{\rm MeV}$

FIG. 1.—Evolution of the neutron-proton ratio with temperature. The NSE ratio is given by the dashed curve. If neutron decay is the only reaction (all other reactions are shut off), the n/p ratio follows the solid curve. The actual final value of the ratio is shown by the straight horizontal line.

$$\frac{n}{p} = \left(\frac{n}{p}\right)_{\rm FO} \exp\left(-\frac{t - t_{\rm FO}}{\tau_n}\right) \sim \exp\left(-\frac{\Delta}{T_{\rm FO}} - \frac{t - t_{\rm FO}}{\tau_n}\right)$$

$$\frac{n}{p} = \left(\frac{n}{p}\right)_{\rm FO} \exp\left(-\frac{t-t_{\rm FO}}{\tau_n}\right) \sim \exp\left(-\frac{\Delta}{T_{\rm FO}} - \frac{t-t_{\rm FO}}{\tau_n}\right)$$
⁴He production: $X(^4{\rm He}) \sim \frac{2n}{n+p} = \frac{2(n/p)}{(n/p)+1}$
 $t \sim \frac{1}{\sqrt{a+bN_{\nu}}} \frac{1}{T^2}, \ \lambda_{\nu N} \propto T^5, \ \int_{t_{\rm FO}}^{\infty} \lambda_{\nu N} dt \propto \frac{T_{\rm FO}^3}{\sqrt{a+bN_{\nu}}} \sim {\rm const.}$
 $N_{\nu} \uparrow \Rightarrow T_{\rm FO} \uparrow \Rightarrow \left(\frac{n}{p}\right)_{\rm FO} \sim \exp\left(-\frac{\Delta}{T_{\rm FO}}\right) \uparrow$
 $N_{\nu} \uparrow \Rightarrow t \downarrow \Rightarrow \frac{n}{p} = \left(\frac{n}{p}\right)_{\rm FO} \exp\left(-\frac{t-t_{\rm FO}}{\tau_n}\right) \uparrow$
 $N_{\nu} \uparrow \Rightarrow \frac{n}{p} \uparrow \Rightarrow X(^4{\rm He}) \uparrow$

Nuclear Statistical Equilibrium (NSE) $Zp + (A - Z)n \rightleftharpoons (Z, A) + \gamma \Rightarrow Z\mu_p + (A - Z)\mu_n = \mu(Z, A)$ considering excited states of nuclei: $n(Z,A) = \sum_{i} \frac{2J_i + 1}{(2\pi)^3} \int_0^\infty \frac{4\pi p^2 dp}{\exp\{[(p^2/2M) + M + E_i - \mu]/T\}}$ $= G(Z,A) \left(\frac{MT}{2\pi}\right)^{3/2} \exp\left[\frac{\mu(Z,A) - M(Z,A)}{T}\right]$ nuclear partition function: $G(Z, A) = \sum_{i} (2J_i + 1) \exp\left(-\frac{E_i}{T}\right)$ $\Rightarrow X(Z,A) = X_p^Z X_n^{A-Z} \frac{G(Z,A)}{2^A} A^{5/2}$

$$\times \left(\frac{\rho_b}{M_N}\right)^{A-1} \left(\frac{2\pi}{M_N T}\right)^{3(A-1)/2} \exp\left[\frac{B(Z,A)}{T}\right]$$

In NSE, no rates are needed to calculate abundances:

$$1 = X_n + X_p + \sum_{(Z,A)} X(Z,A)$$

$$Y_e = X_p + \sum_{(Z,A)} \frac{Z}{A} X(Z,A)$$

$$X(Z,A) = X_p^Z X_n^{A-Z} \frac{G(Z,A)}{2^A} A^{5/2}$$

$$\times \left(\frac{\rho_b}{M_N}\right)^{A-1} \left(\frac{2\pi}{M_N T}\right)^{3(A-1)/2} \exp\left[\frac{B(Z,A)}{T}\right]$$

$$\left[\eta \left(\frac{T}{M_N}\right)^{3/2}\right]^{A-1} \exp\left[\frac{B(Z,A)}{T}\right] \sim 1$$

 $\Rightarrow (Z, A)$ drops out of NSE at lower T

d(d, p)t $^{3}\mathrm{He}(d, p)^{4}\mathrm{He}$ $t(d, n)^{4}\mathrm{He}$ FIG. 2.—Evolution of light-element abundances with temperature, for a baryon-to-photon ratio $\eta_{10} = 3.16$. The dashed curves give the NSE curves of ⁴He, t, ³He, and d, respectively. The dotted curve is explained in the text.

$$T_{\rm NSE} \sim \frac{B(Z,A)/(A-1)}{\ln \eta^{-1} + (3/2)\ln(M_N/T)}$$

Expansion from high temperature & density

 nuclear statistical equilibrium (NSE) all strong & electromagnetic reactions in equilibrium

 $(A - Z)n + Zp \rightleftharpoons (Z, A) + \gamma$

• quasi-statistical equilibrium (QSE) clusters of nuclei form & reactions involving n, p, & light nuclei in equilibrium within each cluster $(n, \gamma), (p, \gamma), (n, p), (\alpha, \gamma), (\alpha, n), (\alpha, p)$

hot r-process

QSE within each isotopic chain only

 $(n, \gamma) \rightleftharpoons (\gamma, n)$ equilibrium

quasi-statistical equilibrium (QSE)

typically QSE is achieved for $0.5\gtrsim T\gtrsim 0.25~{\rm MeV}$

determination of neutron-to-seed ratio

 $Y_e \downarrow \Rightarrow$ more neutrons

entropy per baryon $S \propto (T^3/\rho) \uparrow \Rightarrow$ more photons capable of disintegrating ⁹Be \Rightarrow fewer seeds $\tau_{\rm dyn} \downarrow \Rightarrow$ shorter time for producing seeds

conditions for producing r-nuclei with A~200

 $(n,\gamma) \rightleftharpoons (\gamma,n)$ equilibrium: $n + (Z,A) \rightleftharpoons (Z,A+1) + \gamma$

typically achieved for $0.25 \gtrsim T \gtrsim 0.1 \text{ MeV}$

$$\frac{Y(Z,A+1)}{Y(Z,A)} = \frac{G(Z,A+1)}{G(Z,A)} \left(\frac{A+1}{A}\right)^{3/2} \\ \times \frac{n_n}{2} \left(\frac{2\pi}{M_N T}\right)^{3/2} \exp\left[\frac{S_n(Z,A+1)}{T}\right]$$

 $\sim 1 \Rightarrow$ waiting-point nuclei

$$S_n^{\text{WP}} \sim T \ln \left[\frac{2}{n_n} \left(\frac{M_N T}{2\pi} \right)^{3/2} \right]$$

= $T_9 [2.79 + 0.198 (1.5 \log T_9 - \log n_{n,20})] \text{ MeV}$

steady β -flow in $(n, \gamma) \rightleftharpoons (\gamma, n)$ equilibrium

Rapid neutron capture: the r-process

 $\Rightarrow Y_{\rm WP}(Z) \propto 1/\lambda_{\beta}^{\rm WP}(Z)$

 $(n,\gamma) \rightleftharpoons (\gamma,n)$ equilibrium: $n + (Z,A) \rightleftharpoons (Z,A+1) + \gamma$ $\frac{Y(Z, A+1)}{V(Z, A)} = \frac{G(Z, A+1)}{2G(Z, A)} \left(\frac{A+1}{A}\right)^{3/2}$ $\times n_n \left(\frac{2\pi}{M_N T}\right)^{3/2} \exp\left[\frac{S_n(Z,A+1)}{T}\right]$ $n_n \langle \sigma_{n,\gamma}(Z,A)v \rangle Y(Z,A) = \lambda_{\gamma,n}(Z,A+1)Y(Z,A+1)$ $\Rightarrow \lambda_{\gamma,n}(Z,A+1) = n_n \frac{Y(Z,A)}{Y(Z,A+1)} \langle \sigma_{n,\gamma}(Z,A)v \rangle$ $= \frac{2G(Z,A)}{G(Z,A+1)} \left(\frac{A}{A+1}\right)^{3/2} \langle \sigma_{n,\gamma}(Z,A)v \rangle$ $\times \left(\frac{M_N T}{2\pi}\right)^{3/2} \exp\left[-\frac{S_n(Z,A+1)}{T}\right]$

typical nuclear properties of waiting-point nuclei with N = 82 & 126

$$S_n \sim 2 \text{ MeV}, \ \langle \sigma_{n,\gamma} v \rangle \sim 10^{-20} \text{ cm}^3 \text{ s}^{-1}, \ \lambda_\beta \sim 10 \text{ s}^{-1}$$

 $n_n \langle \sigma_{n,\gamma} v \rangle \gg \lambda_\beta \Rightarrow n_n \gg 10^{21} \text{ cm}^{-3}$
 $T_9 \sim 1 \Rightarrow \lambda_{\gamma,n} \sim 10^4 \text{ s}^{-1} \gg \lambda_\beta$

time for $\beta\text{-flow to go from seeds through }N=82$ and 126 $\text{is}\lesssim 1~\text{s}$

in contrast to a hot r-process, a cold r-process occurs when photo-disintegration can be ignored

 $T_9 \ll 1 \Rightarrow \text{cold r-process}$

Hot r-process starting with free nucleons

Wanajo et al. 2004

t: 0.00e+00 s / T: 10.96 GK / ρ_b: 8.71e+12 g/cm³

"neutronization" pulse at shock breakout

 $e^- + p \rightarrow n + \nu_e \Rightarrow \text{predominantly } \nu_e$

Supernovae as a neutrino phenomenon

$$e^+ + e^- \to \nu + \bar{\nu}$$

$$N + N \to N + N + \nu + \bar{\nu}$$

 $\frac{GM^2}{R_{\rm NS}} \sim 3 \times 10^{53} \ {\rm erg}$

 $\Rightarrow \nu_e, \ \bar{\nu}_e, \ \nu_\mu, \ \bar{\nu}_\mu, \ \nu_\tau, \ \bar{\nu}_\tau$

neutrino emission from a low-mass SN

setting n/p in the neutrino-driven wind $n/p > 1 \Rightarrow Y_e < 0.5$ Qian et al. 1993 Qian & Woosley 1996 McLaughlin et al. 1996 NS Horowitz & Li 1999 $\sigma_{\nu N} \propto (E_{\nu} \mp \Delta_{np})^2$ $\lambda_{\bar{\nu}_e p} = \frac{L_{\bar{\nu}_e}}{4\pi r^2} \frac{\langle \sigma_{\bar{\nu}_e p} \rangle}{\langle E_{\bar{\mu}} \rangle} \propto L_{\bar{\nu}_e} \left(\frac{\langle E_{\bar{\nu}_e}^2 \rangle}{\langle E_{\bar{\mu}} \rangle} - 2\Delta_{np} \right)$ $\lambda_{\nu_e n} = \frac{L_{\nu_e}}{4\pi r^2} \frac{\langle \sigma_{\nu_e n} \rangle}{\langle E_u \rangle} \propto L_{\nu_e} \left(\frac{\langle E_{\nu_e}^2 \rangle}{\langle E_u \rangle} + 2\Delta_{np} \right)$ $\frac{\langle E_{\bar{\nu}_e}^2 \rangle}{\langle E_{\bar{\nu}_e} \rangle} - \frac{\langle E_{\nu_e}^2 \rangle}{\langle E_{\nu_e} \rangle} > 4\Delta_{np} \approx 5.2 \text{ MeV} \Rightarrow \frac{n}{n} > 1$

neutrino opacities!

Martinez-Pinedo et al. 2012; Roberts & Reddy 2012

r–Process in Neutrino–driven Wind (e.g., Woosley & Baron 1992; Meyer et al. 1992; Woosley et al. 1994)

neutrino-driven winds in 3D models (Wang et al. 2023)

the vp-process in p-rich v-driven winds (Frohlich et al. 2006a,b; Pruet et al. 2005,2006)

 $(p, \gamma) \rightleftharpoons (\gamma, p)$ equilibrium \Rightarrow waiting point

break through waiting-point nuclei with slow beta decay:

 $\bar{\nu}_e + p \to n + e^+, \ (Z, A) + n \to p + (Z - 1, A)$

Mass Loss Phases During NS-NS and NS-BH Merging

Neutrino-Induced n Capture in He Shell of early SNe

neutron production by

 ${}^{4}\text{He}(\nu,\nu n){}^{3}\text{He}(n,p){}^{3}\text{H}({}^{3}\text{H},2n){}^{4}\text{He}$

Epstein, Colgate, & Haxton 1988

neutron capture by ⁵⁶Fe

high n_n requires few ⁵⁶Fe

 $\bar{\nu}_e + {}^4 ext{He} \rightarrow {}^3 ext{H} + n + e^+, \ \lambda_{\bar{\nu}_e\alpha,n} \propto T_{\bar{\nu}_e}^{5-6} \ !$ Banerjee, Haxton, & Qian 2011

333 31 - 32

Neutrino Spectra & Flavor Oscillations

 $T_{\nu_e} \sim 3-4 \text{ MeV}, \ T_{\bar{\nu}_e} \sim 4-5 \text{ MeV}, \ T_{\nu_{\mu,\tau}} = T_{\bar{\nu}_{\mu,\tau}} \sim 6-8 \text{ MeV}$

normal mass hierarchy

inverted mass hierarchy

Banerjee, Qian, Heger, & Haxton 2016

Ab Initio Model of Chemical Evolution

Data-Driven Nuclear Forensics

Early Chemical Evolution (~ First Gyr)

dominant sources: Core-Collapse SNe & NS Mergers

$$\left(\frac{\mathrm{E}}{\mathrm{Fe}}\right) = x \left(\frac{\mathrm{E}}{\mathrm{Fe}}\right)_1 + (1-x) \left(\frac{\mathrm{E}}{\mathrm{Fe}}\right)_2$$

R-Process Alliance search for r-process-enhanced stars in the Galactic Halo: data on (Sr/Fe), (Ba/Fe), (Eu/Fe) for 195 stars (Holmbeck et al. 2020)

 $[E/Fe] = log(E/Fe) - log(E/Fe)_{sun}$

 $[Sr/Fe]_1 = -0.49$, $[Ba/Fe]_1 = -3.00$, $[Eu/Fe]_1 = -0.77$ $[Sr/Fe]_2 = 0.90$, $[Ba/Fe]_2 = 0.91$, $[Eu/Fe]_2 = 1.30$

Gross, Xiong, & Qian 2023

Gross, Xiong, & Qian 2023

 $\alpha_{\odot} \approx \frac{(\mathrm{Sr/Eu})_{\mathrm{NSM}}(\mathrm{Eu})_{\odot}}{(\mathrm{Sr/Fe})_{\mathrm{SN}}(\mathrm{Fe})_{\odot,\mathrm{SN}}} \approx 3 \Rightarrow (\mathrm{Fe})_{\odot,\mathrm{SN}} \approx (\mathrm{Fe})_{\odot}/3$

Gross, Xiong, & Qian 2023

Gross, Xiong, & Qian 2023

