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Supernovae: Classification
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Pair Instability Supernovae
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Pair Instability Supernovae

PISN produce large ejecta masses
(> 50Msun) hence their light curves
peak over a timescale of ~1yr. The
56N| mass ejected can range from
zero to several 10Msun, hence there is
a very wide range in (predicted)
luminosities, even exceeding the
most luminous supernovae yet

R-band Magnitude

observed.
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Around the lower mass end, explosive
burning does not disrupt the star,
leading to a subsequent collapse(s)
due to pair instability, and more
explosive burning. These are called
pulsational pair instability
supernovae when a terminal pulse
occurs (stars can also move to regular
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Pre-supernova Evolution

Stars that do not encounter the pair
instability, go through advanced
burning stages of increasingly
heavier elements.

Stars more massive than about 10Msyn at
solar metallicity reach silicon burning,
generating a degenerate iron core.

[{e]

Since iron and surrounding elements are
the most tightly bound nuclel, no more
energy can be produced by nuclear
fusion, and the core grows in mass (due
to continuous silicon burning), being
supported against gravity by electron
degeneracy pressure.
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Core Collapse and Bounce

Once collapse sets in, the dynamics
proceeds on the dynamical time for a
core of mass ~1.4Msun and radius
2000km:

M —1/2 R 3/2
tdyn ~ 1s
1.4 Mg 2000 km

Collapse proceeds self-similarly, with
the inner regions contracting sub-
sonically and with velocity proportional
to radius (“homologous collapse™).
The contraction speed reaches a peak
above the sound speed: the outer
core collapses supersonically.

ONeMg or
Fe core

Yahil & Lattimer (1982)
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Core Collapse and Bounce

When the center of the core reaches 200 oy
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relative to lower densities. This is quantitied -100 f ]
by the adiabatic index P ~ pv. This stiffening =
is due to the fact that the strong interaction RERAANon

becomes repulsive at very short distances.

This results in a hydrodynamic pulse (sound
wave) emerging from the core due to the
slow down. The sound wave stiffens into a
shock once it reaches the supersonically
collapsing regions (the “bounce shock”).



https://www.nature.com/articles/445156a

Core Collapse and Bounce

The outgoing shock stalls on its
way out due to energy losses from
dissociation of heavy nuclei falling
through it and neutrino emission.

Dissociation of a heavy nucleus
costs the nuclear binding energy
of the nucleus (~8-9 MeV/
nucleon), which decreases the
internal energy.

Electron neutrinos (produced by

e- capture on p) initially trapped
behind the shock, are suddenly
released once the shock reaches |
optically thin regions: electron ="

neutrino burst. 0 50 100 150 200 250 300 350
tpb [ms]
Couch & O’Connor (2014)
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Delayed Neutrino Mechanism

The stalled shock needs additional V
energy to be revived in order for a
successful explosion to occur. \

In the absence of additional

effects like rapid rotation, the

default explosion mode is the
delayed neutrino mechanism. Y

A fraction ~1% of neutrinos emitted
by the dense core (protoneutron
star) and by accretion, are re-
absorbed Iin a layer just behind the
shock where heating dominates
cooling (the “gain” layer).

/

Bethe & Wilson (1985)
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Delayed Neutrino Mechanism: Numbers
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Delayed Neutrino Mechanism: Evidence

Evidence for the delayed neutrino
mechanism comes from SN 1987A,
the closest core-collapse
supernova in the modern era, and
the first multi-messenger

astrophysical source (after the Sun)

A total of 24 neutrinos were detected,
with a timing consistent with what is
expected from the delayed neutrino
mechanism (a few hours before
electromagnetic detection when the
shock breaks out of the stellar surface).
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Supernovae in Binary Systems

Significant fraction of
massive stars live in
binary systems

(e.g., Sana et al. 2012)

Interaction between
stars leads to more
complex evolution and
Interesting outcomes.

Binary black holes and/or
neutron stars!

(e.g., Postnov & Yungelson 2014)
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Double Neutron Star Systems

We know of at least 12 SN B N
double NS (DNS) binary P sttt
systems in the Milky Way, 22510 0+ 07 (o) ()

with 3 more that could
also be WD-NS systems.

Faber & Rasio (2012)
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Out of these, only 7 will
merge In less than a T

Hubble time due to GW
emission and orbital decay.

B non-recycled PSR
(second—born NS)

B rccycled PSR
(first—born NS)

Number
3

. recycled PSR?
NS/WD ? i

The mass distribution is I
peaked around 1.35 Msun. C1TIT 12 13 14 15 16 17 18 18 2 21 22

NS mass (Mg)

Tauris et al. (2017)
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Inspiral Phase: Gravitational Waves
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Inspiral Phase: Gravitational Waves

Ground-based interferometers are most sensitive to the

inspiral phase, where GW signal is in the 100-1000 Hz range.

Key difference with BHBH waveform is
the effects of tides due to the finite size
of NSs: change in phase evolution.

e.g. Blanchet et al. (2006) Hinderer et al. (2016)

GW170817 yielded constraints on the
tidal deformability parameter A of
neutron stars, which constrains the
EOS of neutron star matter.

Abbott et al. [LVC] (2017)
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Dynamical Phase: Numerical Relativity

Spacetime evolves non-linearly:
perturbative approach not
possible, must solve

numerically.

Nakamura et al. (1987), Shibata & Nakamura (1995),
Baumgarte & Shapiro (1999), Pretorius (2005)

Long-history of efforts to include
matter, focusing on GR with
simple fluids, or on the
microphysics with simple gravity.

Rezzolla+ (2010)

e.g. Ruffert & Janka (1996), Shibata & Uryu (2000)

State-of-the-art models focus on including GRMHD and neutrino
transport with good accuracy for mass ejection and
composition (GW emission not very sensitive to those effects).
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Dynamical Phase: Mass Ejection
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& cooling, and magnetic stresses.
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(e.g., Radice et al. 2018, Shibata & Hotokezaka 2019) 50 ' 0 50 2

Bauswein et al. (2013)
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Dynamical Phase: Mass Ejection

For BHNS models, there is only tidal
tail dynamical ejecta.
(e.q., Shibata & Taniguchi 2000)

In addition, for BHNS systems there
IS a finite range in mass ratios and
initial BH spins such that the NS s
tidally disrupted and not swallowed.

Foucart et al. (2018)

Foucart et al. (2014)

Semianalytic formulae for mass

ejection.
e.g., Kruger & Foucart (2020)

Additional complications include
misalignment between BH spin ——
and orbital spin (precession, etc.)

Foucart et al. (2017)
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Dynamical Phase: Mass Ejection

Composition of Ejecta
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Dynamical Phase;
Magnetic Field Amplification

The shear interface in NSNS mergers is subject
to the Kelvin-Helmholtz instability, which can

efficiently convert turbulent kinetic energy into
small-scale magnetic fields.

Price & Rosswog (2006)

A current challenge is that numerical simulations
cannot reach spatial resolutions that allow
convergence and self-consistent production of

large-scale fields through dynamo action. Sulb-
grid models have been developed.

e.g., Miravet-Tenés et al. (2022)
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