Physics and Sources of Gravitational Waves

Neil J. Cornish

Gravitational Wave Spectrum

Supermassive BH Binaries

Inflation Probe

10⁻⁹ Hz

Gravitational Wave Sources

LIGO

LISA

Man Man Man Man Man Man Man

Solving Einstein's Equations

 $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$

Decoding the Data

Part 1. Solving Einstein's Equations

Post-Minkowski Expansion

Post-Newtonian Expansion

Black Hole Perturbation/Self Force

Numerical Relativity

Solving Einstein's Equations $G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$

$$q = \frac{m_2}{m_1} \ll 1$$

$$\frac{\partial g}{\partial x} \approx \frac{g(x+\epsilon) - g(x)}{\epsilon}$$

For gravitationally bound systems $U \sim \frac{v^2}{c^2}$

Modern treatments of PN theory use the PM formalism since it avoids ambiguities related to retardation Several different approaches, DIRE, Matched Asymptotic Expansions, EFT

Defining
$$h^{\alpha\beta} = \eta^{\alpha\beta} - \mathfrak{g}^{\alpha\beta}$$
 where $\mathfrak{g}^{\alpha\beta} = \sqrt{-g} g^{\alpha\beta}$
Einstein's Equations become $\Box h^{\alpha\beta} = -\frac{16\pi G}{c^4} \tau^{\alpha\beta}$
 $\partial_{\beta} h^{\alpha\beta} = 0$

where $\tau^{\alpha\beta} = -g(T^{\alpha\beta} + t_{\rm LL}^{\alpha\beta} + t_{\rm H}^{\alpha\beta})$

Both $t_{
m LL}^{lphaeta}, t_{
m H}^{lphaeta}$ are quadratic and higher in $h^{lphaeta}$

Lends itself to a perturbative solution in powers of h^n .

Higher orders are trickier because the source is then non-compact.

$$\Box h^{\alpha\beta} = -\frac{16\pi G}{c^4} \tau^{\alpha\beta}$$
$$\partial_{\beta} h^{\alpha\beta} = 0$$

$$\frac{ct' - |\mathbf{x} - \mathbf{x}'|)\tau^{\alpha\beta}(x')}{|\mathbf{x} - \mathbf{x}'|} d^4x'$$

Leading order is just like E&M. Jackson revisited.

Integration domains for the retarded solution of the wave equation: $\mathscr{C}(x)$ is the past light cone of the field point x; \mathscr{D} is the world tube traced by a three-dimensional ball of radius \mathcal{R} , which contains the near-zone region of spacetime; $\mathscr{N}(x)$ is the intersection of $\mathscr{C}(x)$ with the near zone; and $\mathscr{W}(x)$ is the remaining piece of the light cone.

$$\frac{ct' - |\mathbf{x} - \mathbf{x}'|)\tau^{\alpha\beta}(x')}{|\mathbf{x} - \mathbf{x}'|} d^4x'$$

 t_c := characteristic time scale of the source,

$$\omega_c := \frac{2\pi}{t_c} = \text{characteristic frequency of the source,}$$

$$\lambda_c := \frac{2\pi c}{\omega_c} = ct_c = \text{characteristic wavelength of the radiation}$$

$$r_c := \text{characteristic length scale of the compact-support so}$$

$$v_c := \frac{r_c}{t_c} = \text{characteristic velocity within the source.}$$

$$v_c \ll c \qquad \Rightarrow \qquad r_c \ll \lambda_c$$

$$h^{\alpha\beta}(x) = \frac{4G}{c^4} \int \frac{\delta(ct - ct' - |\mathbf{x} - \mathbf{x}'|)\tau^{\alpha\beta}(x')}{|\mathbf{x} - \mathbf{x}'|} d^4x'$$

First iteration yields the solution

 $h^{00} = \frac{4u}{c^2}$

$$h^{0j} = \frac{4u^j}{c^2}$$

 $h^{jk} = 0$

 $g_{00} = -1 + \frac{2u}{c^2}, \quad g_{0j} =$ \Rightarrow

Post-Newtonian Expansion

$$u(t, \mathbf{x}) = G \int \frac{\rho(t, \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3 x'$$

$$u^{j}(t, \mathbf{x}) = G \int \frac{\rho(t, \mathbf{x}')v^{j}(t, \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^{\frac{j}{2}}$$

$$= -\frac{4u_j}{c^3}, \quad g_{jk} = \delta_{jk} \left(1 + \frac{2u}{c^2}\right)$$

$$h^{\alpha\beta}(x) = \frac{4G}{c^4} \int \frac{\delta(ct - ct' - |\mathbf{x} - \mathbf{x}'|)\tau^{\alpha\beta}(x')}{|\mathbf{x} - \mathbf{x}'|} d^4x'$$

Second iteration is sourced by the first. Already the full solution gets a bit messy, with corrections to the metric in the near and wave zone. In the far away wave zone the solution is

$$h^{00} = \frac{4G}{c^2 R} \left(M + \frac{1}{2c^2} \ddot{\mathcal{I}}^{jk} N_j N_k \right) \qquad \qquad h^{0j} = \frac{2G}{c^3 R} \ddot{\mathcal{I}}^{jk} N_k \qquad \qquad h^{jk} = \frac{2G}{c^4 R} \ddot{\mathcal{I}}^{jk}$$

Mass quadrupole
$$\mathcal{I}^{jk}(t-r/c) = \int \rho^*(t',x') \, x'^j x'^k \, d^3 x'$$
 $N^j = \frac{x^j}{R}$ $R = \sqrt{x^j}$

These expressions are fully general. Can be used for supernova explosions, binary mergers etc

At this stage we have not yet imposed the gauge condition

$$\partial_{\beta}h^{\alpha\beta} = 0$$

Imposing the gauge condition $\partial_\beta h^{\alpha\beta} = 0$ and using the residual gauge freedom to remove the trace of the radiative terms yields

$$h^{00} = -$$

 $h^{0j} = 0$

Where we have the TT gauge projection tensor

The projection tensor ensures that the radiation is transverse and traceless

 $\frac{4GM}{c^2R}$

 $h^{jk} = \frac{2GM}{c^4 R} \Lambda^{jk}_{lm} \ddot{\mathcal{I}}^{lm}$

 $\Lambda_{lm}^{jk} = P_l^j P_m^k - \frac{1}{2} P^{jk} P_{lm} \qquad \text{with} \qquad P_k^j = \delta_k^j - N^j N_k$

Near zone metric modified - modifies the dynamics. For example, for binary systems

0 PN 1 PN 1.5 PN 2 PN

Newton

$$\mathbf{a}_N = -rac{M}{r^2}\,\mathbf{\hat{n}}$$

Perihelion precession

$$\mathbf{a}_{PN} = -\frac{M}{r^2} \left\{ \mathbf{\hat{n}} \left[(1+3\eta)v^2 - 2(2+\eta)\frac{M}{r} - \frac{3}{2}\eta \dot{r}^2 \right] - 2(2-\eta)\dot{r}\mathbf{v} \right\}$$

Spin-orbit coupling

$$\mathbf{a}_{SO} = \frac{1}{r^3} \left\{ 6\mathbf{\hat{n}} [(\mathbf{\hat{n}} \times \mathbf{v}) \cdot (2\mathbf{S} + \frac{\delta M}{M} \mathbf{\Delta})] - [\mathbf{v} \times (7\mathbf{S} + 3\frac{\delta M}{M} \mathbf{\Delta})] + 3\dot{r} [\mathbf{\hat{n}} \times (3\mathbf{S} + \frac{\delta M}{M} \mathbf{\Delta})] \right\}$$

Gravity gravitates

$$\begin{aligned} \mathbf{a}_{2PN} &= -\frac{M}{r^2} \bigg\{ \mathbf{\hat{n}} \bigg[\frac{3}{4} (12+29\eta) \left(\frac{M}{r} \right)^2 + \eta (3-4\eta) v^4 + \frac{15}{8} \eta (1-3\eta) \dot{r}^4 \\ &- \frac{3}{2} \eta (3-4\eta) v^2 \dot{r}^2 - \frac{1}{2} \eta (13-4\eta) \frac{M}{r} v^2 - (2+25\eta+2\eta^2) \frac{M}{r} \dot{r}^2 \bigg] \\ &- \frac{1}{2} \dot{r} \mathbf{v} \left[\eta (15+4\eta) v^2 - (4+41\eta+8\eta^2) \frac{M}{r} - 3\eta (3+2\eta) \dot{r}^2 \right] \bigg\} \end{aligned}$$

2 PN 2.5 PN

 $\mathbf{a} = \mathbf{a}_N + \mathbf{a}_{PN} + \mathbf{a}_{SO} + \mathbf{a}_{2PN} + \mathbf{a}_{SS} + \mathbf{a}_{RR} + \dots$

1 PN 0 PN 1.5 PN Spin-spin coupling

 $\mathbf{a}_{RR} = \frac{8}{5} \eta \frac{M^2}{r^3} \left\{ \dot{r} \mathbf{\hat{n}} \right\| 18$ Orbital decay

Now heroically continued to 4 PN order by Luc Blanchet's group: [Marchand, Bernard, Blanchet & Faye, arXiv:1707.09289 (2017)]

 $M = m_1 + m_2$

Note on notation:

$$\delta M = m_1 - m_2$$

Post-Newtonian Expansion

2 PN 2 PN 2.5 PN

 $\mathbf{a} = \mathbf{a}_N + \mathbf{a}_{PN} + \mathbf{a}_{SO} + \mathbf{a}_{2PN} + \mathbf{a}_{SS} + \mathbf{a}_{RR} + \dots$

 $\mathbf{a}_{SS} = -\frac{3}{\mu r^4} \left\{ \mathbf{\hat{n}} (\mathbf{S_1} \cdot \mathbf{S_2}) + \mathbf{S_1} (\mathbf{\hat{n}} \cdot \mathbf{S_2}) + \mathbf{S_2} (\mathbf{\hat{n}} \cdot \mathbf{S_1}) - 5\mathbf{\hat{n}} (\mathbf{\hat{n}} \cdot \mathbf{S_1}) (\mathbf{\hat{n}} \cdot \mathbf{S_2}) \right.$

$$8v^{2} + \frac{2}{3}\frac{M}{r} - 25\dot{r}^{2} - \mathbf{v} \left[6v^{2} - 2\frac{M}{r} - 15\dot{r}^{2} \right] \right\}$$

$$\mu = \frac{m_1 m_2}{M} \qquad \qquad \eta = \frac{\mu}{M} = \frac{m_1 m_2}{M^2}$$

 $\mathbf{\Delta} = M \left(\frac{\mathbf{S_2}}{m_2} - \frac{\mathbf{S_1}}{m_1} \right)$ $\mathbf{S} = \mathbf{S}_1 + \mathbf{S}_2$

We also have equations for the spin and orbital angular momentum evolution at 2PN:

$$\begin{split} \dot{\mathbf{S}}_{\mathbf{1}} &= \frac{1}{r^3} \left\{ (\mathbf{L}_{\mathbf{N}} \times \mathbf{S}_{\mathbf{1}}) (2 + \frac{3}{2} \frac{m_2}{m_1}) - \mathbf{S}_{\mathbf{2}} \times \mathbf{S}_{\mathbf{1}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{2}}) \hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{1}} \right\} \\ \dot{\mathbf{S}}_{\mathbf{2}} &= \frac{1}{r^3} \left\{ (\mathbf{L}_{\mathbf{N}} \times \mathbf{S}_{\mathbf{2}}) (2 + \frac{3}{2} \frac{m_1}{m_2}) - \mathbf{S}_{\mathbf{1}} \times \mathbf{S}_{\mathbf{2}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}) \hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}} \right\} \\ \dot{\mathbf{L}} &= -\frac{1}{r^3} \left\{ \left[\mathbf{L}_{\mathbf{N}} \times \left(\frac{7}{2} \mathbf{S} + \frac{3}{2} \frac{\delta M}{M} \mathbf{\Delta} \right) \right] + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}) (\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}}) + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{2}}) (\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{1}}) \right\} \end{split}$$

$$\begin{split} \dot{\mathbf{S}}_{1} &= \frac{1}{r^{3}} \left\{ (\mathbf{L}_{N} \times \mathbf{S}_{1})(2 + \frac{3}{2}\frac{m_{2}}{m_{1}}) - \mathbf{S}_{2} \times \mathbf{S}_{1} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{2})\hat{\mathbf{n}} \times \mathbf{S}_{1} \right\} \\ \dot{\mathbf{S}}_{2} &= \frac{1}{r^{3}} \left\{ (\mathbf{L}_{N} \times \mathbf{S}_{2})(2 + \frac{3}{2}\frac{m_{1}}{m_{2}}) - \mathbf{S}_{1} \times \mathbf{S}_{2} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{1})\hat{\mathbf{n}} \times \mathbf{S}_{2} \right\} \\ \dot{\mathbf{L}} &= -\frac{1}{r^{3}} \left\{ \left[\mathbf{L}_{N} \times \left(\frac{7}{2}\mathbf{S} + \frac{3}{2}\frac{\delta M}{M} \mathbf{\Delta} \right) \right] + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{1})(\hat{\mathbf{n}} \times \mathbf{S}_{2}) + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{2})(\hat{\mathbf{n}} \times \mathbf{S}_{1}) \right\} \end{split}$$

$$\begin{split} \dot{\mathbf{S}}_{1} &= \frac{1}{r^{3}} \left\{ (\mathbf{L}_{N} \times \mathbf{S}_{1})(2 + \frac{3}{2}\frac{m_{2}}{m_{1}}) - \mathbf{S}_{2} \times \mathbf{S}_{1} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{2})\hat{\mathbf{n}} \times \mathbf{S}_{1} \right\} \\ \dot{\mathbf{S}}_{2} &= \frac{1}{r^{3}} \left\{ (\mathbf{L}_{N} \times \mathbf{S}_{2})(2 + \frac{3}{2}\frac{m_{1}}{m_{2}}) - \mathbf{S}_{1} \times \mathbf{S}_{2} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{1})\hat{\mathbf{n}} \times \mathbf{S}_{2} \right\} \\ \dot{\mathbf{L}} &= -\frac{1}{r^{3}} \left\{ \left[\mathbf{L}_{N} \times \left(\frac{7}{2}\mathbf{S} + \frac{3}{2}\frac{\delta M}{M} \mathbf{\Delta} \right) \right] + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{1})(\hat{\mathbf{n}} \times \mathbf{S}_{2}) + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{2})(\hat{\mathbf{n}} \times \mathbf{S}_{1}) \right\} \end{split}$$

At 2 PN order the dynamics is conservative:

Exact solution for circular binary: [Kesden, Gerosa, O'Shaughnessy, Berti, Sperhake, Phys. Rev. Lett. 114, 081103 (2015)] [Chatziioannou, Klein, Yunes, Cornish, Phys. Rev. Lett. 118, 051101 (2017)]

 $\mathbf{J} = \mathbf{L} + \mathbf{S} = \text{constant}$

Spin precession

$$\dot{\mathbf{S}}_{\mathbf{1}} = \frac{1}{r^3} \left\{ (\mathbf{L}_{\mathbf{N}} \times \mathbf{S}_{\mathbf{1}})(2 + \frac{3}{2}\frac{m_2}{m_1}) - \mathbf{S}_{\mathbf{2}} \times \mathbf{S}_{\mathbf{1}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{2}})\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{1}} \right\} \qquad \dot{\mathbf{S}}_{\mathbf{2}} = \frac{1}{r^3} \left\{ (\mathbf{L}_{\mathbf{N}} \times \mathbf{S}_{\mathbf{2}})(2 + \frac{3}{2}\frac{m_1}{m_2}) - \mathbf{S}_{\mathbf{1}} \times \mathbf{S}_{\mathbf{2}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}} \right\} \qquad \dot{\mathbf{L}} = -\frac{1}{r^3} \left\{ \left[\mathbf{L}_{\mathbf{N}} \times \left(\frac{7}{2}\mathbf{S} + \frac{3}{2}\frac{\delta M}{M} \mathbf{\Delta} \right) \right] + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}}) + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{2}})(\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}}) + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}})(\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}}) + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}}) + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}}) + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}})(\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}}) + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}})(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} \times \mathbf{S}_{\mathbf{2}}) + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}})(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}} + 3(\hat{\mathbf{n}} \cdot \mathbf{S}_{\mathbf{1}}))(\hat{\mathbf{n}}$$

$)(\mathbf{\hat{n}} \times \mathbf{S_1}) \bigg\}$

Circular Newtonian Binary

mass ratio: 2.00

eccentricity: 0.00

×

Circular orbit in x-y plane

$$\mathbf{x} = -r\sin(\omega t)\,\hat{i} + r\cos(\omega t)\,\hat{j}$$
$$\omega^2 r^3 = M$$

Circular Newtonian Binary

Location of masses in COM frame:

 $\mathbf{x}_1 = \frac{m_2}{M} \left(-r\sin(\omega t) \,\hat{i} \right)$

 $\mathcal{I}^{ij} = \int \rho(t, \mathbf{x}) x^i x^j \, d^3 x$

Mass quadrupole

 $\mathcal{I}^{xx} = \mu r^2 \sin^2(\omega t)$

$$\mathcal{I}^{yy} = \mu r^2 \cos^2(\omega t)$$

$$+r\cos(\omega t)\hat{j}$$
 $\mathbf{x}_{2} = \frac{m_{1}}{M}\left(r\sin(\omega t)\hat{i} - r\cos(\omega t)\hat{j}\right)$

$$\rho(t, \mathbf{x}) = m_1 \delta(\mathbf{x} - \mathbf{x}_1) + m_2 \delta(\mathbf{x} - \mathbf{x}_2)$$

Mass density

$$\mathcal{I}^{zz} = 0$$

$$\mathcal{I}^{xy} = -\mu r^2 \sin(2\omega t)$$

Circular Newtonian Binary

$$\ddot{\mathcal{I}}^{xx} = 2\mu r^2 \omega^2 \cos(2\omega t) = \frac{2\mu M}{r} \cos(2\omega t)$$
$$\ddot{\mathcal{I}}^{yy} = -2\mu r^2 \omega^2 \cos(2\omega t) = -\frac{2\mu M}{r} \cos(2\omega t)$$

$$h_{ij}^{TT}(t,\mathbf{x}) = \frac{2}{r}\Lambda_{ijkl}\ddot{\mathcal{I}}^{kl}(t-r) \qquad \qquad \Lambda_{ijkl} = P_{ik}P_{jl} - \frac{1}{2}P_{ij}P_{kl} \qquad \qquad P_{ij} = \delta_{ij} - k_ik_j$$

Propagation direction

Applying the projection tensor leaves **h** with components in the plane perpendicular to **k** spanned by **u** and **v**:

$$\mathbf{u} = \cos\theta\cos\phi\,\hat{i} + \cos\theta$$
$$\mathbf{v} = \sin\phi\,\hat{i} - \cos\phi\,\hat{j}$$

$$\ddot{\mathcal{I}}^{xy} = 4\mu r^2 \omega^2 \sin(2\omega t) = \frac{4\mu M}{r} \sin(2\omega t)$$
$$\ddot{\mathcal{I}}^{zz} = 0$$

$$\mathbf{k} = -(\cos\phi\sin\theta\,\hat{i} + \sin\phi\sin\theta\,\hat{j} + \cos\theta\,\hat{k})$$

$$h_{uu} = -h_{vv} = h_{+} = \frac{2\mu M}{r R} \left(1 + \cos^2 \theta\right)$$

$$h_{uv} = h_{\times} = \frac{4\mu M}{r R} \cos\theta \sin(2\omega t + 2\phi)$$

For a binary with a general orientation of the orbital plane

$$h_{uu} = -h_{vv} = \cos(2\psi)h_{+} + \sin(2\psi)h_{\times}$$
$$h_{uv} = -\sin(2\psi)h_{+} + \cos(2\psi)h_{\times}$$

$$h_{+} = \frac{2\mu M}{rR} (1 + \cos^{2}\iota) \cos(2\omega t) \qquad h_{\times}$$

$$\cos \iota = -\hat{k} \cdot \hat{\mathbf{L}}$$
 $\tan \psi = \frac{\mathbf{L}}{-}$

Quasi-Circular Binary, Leading Order

$$h_{+} = \frac{2\mu M}{rR} (1 + \cos^{2} \iota) \cos(2\omega t)$$

Using
$$\omega^2 r^3 = M$$
 we can eliminate t

$$h_{+} = \frac{2}{R} \mathcal{M}^{5/3} \omega^{2/3} (1 + \cos^{2} \iota) \cos(2\omega t) \qquad \qquad h_{\times} = \frac{4}{R} \mathcal{M}^{5/3} \omega^{2/3} \cos \iota \sin(2\omega t)$$

Chirp mass:
$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{M^{1/5}}$$

$$h_{\times} = \frac{4\mu M}{rR} \cos \iota \, \sin(2\omega t)$$

the orbital radius *r*

Energy Emission: Quasi-Circular Binary

$$\left(\frac{dP}{d\Omega}\right)_{\text{quad}} = \frac{R^2}{16\pi} \left\langle \dot{h}_+^2 + \dot{h}_\times^2 \right\rangle = \frac{2\mu^2 r^4 \omega^6}{\pi} \left(\left(\frac{1+\cos^2\theta}{2}\right)^2 + \cos^2\theta \right)$$

$$\Rightarrow \quad P_{\text{quad}} = \frac{32\mu^2 r^4 \omega^6}{5} = \frac{32}{5} \left(\mathcal{M}\omega\right)^{10/3}$$

 $E = \frac{1}{2}\mu v^2 - \frac{\mu M}{r} = -\frac{\mu M}{2r} = -\frac{1}{2}\mathcal{M}^{5/3}\omega^{2/3}$ Orbital Energy:

 $\frac{dE}{dt} = -P_{\text{quad}}$ Orbital Decay:

(Note: 2.5PN order effect)

Quasi-Circular Binary, Phase Evolution

 $\dot{\omega} = \frac{96}{5} \mathcal{M}^{5/3} \omega^{11/3}$

$$\Rightarrow \quad \omega(t) = \frac{1}{\mathcal{M}} \left(\frac{5\mathcal{M}}{256(t_c - t)} \right)^{3/8}$$

$$\Phi(t) = \int 2\omega(t) \, dt = \Phi_c - \frac{1}{16} \left(\frac{256(t_c - t)}{5\mathcal{M}} \right)^{5/8}$$

 $\Rightarrow \int \frac{d\omega}{\omega^{\frac{11}{3}}} = \frac{96}{5} \mathcal{M}^{5/3} \int dt$

Quasi-Circular Binary, Phase Evolution

 $\dot{\omega} = \frac{96}{5} \mathcal{M}^{5/3} \omega^{11/3}$

$$\Rightarrow \quad \omega(t) = \frac{1}{\mathcal{M}} \left(\frac{5\mathcal{M}}{256(t_c - t)} \right)^{3/8}$$

$$\Phi(t) = \int 2\omega(t) \, dt = \Phi_c - \frac{1}{16} \left(\frac{256(t_c - t)}{5\mathcal{M}} \right)^{5/8}$$

 $\Rightarrow \int \frac{d\omega}{\omega^{\frac{11}{3}}} = \frac{96}{5} \mathcal{M}^{5/3} \int dt$

GW170817

Gravitational Wave Chirp

 $h(t) = \frac{4\mathcal{M}}{R}$

$$\omega(t) = \frac{1}{\mathcal{M}} \left(\frac{5\mathcal{M}}{256(t_c - t)} \right)^{3/8}$$

$$\left(\mathcal{M}\omega(t)\right)^{2/3}e^{-i\Phi(t)}$$

$$\Phi(t) = \Phi_c - \frac{1}{16} \left(\frac{256(t_c - t)}{5\mathcal{M}} \right)^{-1}$$

Geodesic Deviation

Ring of test particles in the x-y plane, GW propagating in the z direction

$$R^x_{00x} = -R^y_{00y} = -\frac{\omega^2}{2}h_+$$

 $\frac{d^2 \zeta^{\alpha}}{d\tau^2} = R^{\alpha}_{\ \mu\nu\beta} U^{\mu} U^{\nu} \zeta^{\beta}$

$$\frac{d^2 \zeta^i}{dt^2} = R^i_{\ 00j} \zeta^j$$

$$R^x_{\ 00y} = R^y_{\ 00x} = -\frac{\omega^2}{2}h_{\times}$$

 h_{\times}

Stationary Phase Approximation

$$h(t) = \frac{4\mathcal{M}}{R} \left(\mathcal{M}\omega(t)\right)^{2/3} e^{-i\Phi(t)} \qquad \omega(t) = \frac{1}{\mathcal{M}} \left(\frac{5\mathcal{M}}{256(t_c - t)}\right)^{3/8} \qquad \Phi(t) = \Phi_c - \frac{1}{16} \left(\frac{256(t_c - t)}{5\mathcal{M}}\right)^{5/8}$$

LIGO analyses conducted in frequency domain, need to Fourier transform

$$\tilde{h}(f) = \int dt \, h(t) \, e^{i2\pi ft} = \frac{4\mathcal{M}^{5/3}}{R} \int dt \, \omega(t)^{2/3}$$

Stationary Phase Approximation

$$\tilde{h}(f) = \int dt \, h(t) \, e^{i2\pi ft} = \frac{4\mathcal{M}^{5/3}}{R} \int dt \, \omega(t)^{2/3} e^{i(2\pi ft - \Phi(t))}$$

Taylor expand around stationary point: $\Phi(t) = \Phi(t_*)$

$$\tilde{h}(f) = \frac{4\mathcal{M}^{5/3}}{R} e^{i(2\pi ft_* - \Phi(t_*))} \omega(t_*)^{2/3} \int dt \, e^{-\frac{i}{2}\ddot{\Phi}(t_*)(t - t_*)^2}$$

$$=\frac{4\mathcal{M}^{5/3}}{R}e^{i(2\pi ft_*-\Phi(t_*)-\pi/4)}\omega(t_*)^{2/3}\left(\frac{2\pi}{\ddot{\Phi}(t_*)}\right)^{1/2}$$

$$=\frac{4\mathcal{M}^{5/6}}{R\,\pi^{2/3}}\left(\frac{5}{6}\right)^{1/2}f^{-7/6}\,e^{i(2\pi ft_*-\Phi(t_*)-\pi/4)}$$

$$(*) + \dot{\Phi}(t_*)(t - t_*) + \frac{1}{2}\ddot{\Phi}(t_*)(t - t_*)^2 + \dots \dot{\Phi}(t_*) = 2$$

Can do a decent analysis of binary neutron star signals with this waveform

Quasi-Elliptic Binary, Leading Order

$$h_{+} = \frac{\mu M}{Ra(1-e^{2})} \left(\left[2\cos(2\phi+2\psi) + \frac{5e}{2}\cos(\phi+2\psi) + \frac{e}{2}\cos(3\phi+2\psi) + e^{2}\cos(2\psi) \right] (1+\cos^{2}\iota) + \left[e\cos\phi + e^{2} \right] \sin^{2}\iota \right)$$

$$h_{\times} = \frac{\mu M}{Ra(1-e^2)} \left[4\sin(2\phi + 2\psi) + 5e\sin(\phi + 2\psi) + e\sin(3\phi + 2\psi) + 2e^2\sin(2\psi) \right] \cos \iota$$

The waveforms depend on the first, second and third harmonics of the orbital phase, which itself is not simple harmonic:

$$\cos\phi = -e + \frac{2(1-e^2)}{e} \sum_{k=1}^{\infty} J_k(ke) \cos(k\omega t)$$

End result are waveforms with power spread over many harmonics

Quasi-Elliptic Binary, Leading Order

Note: No radiation reaction included here

www.soundsofspacetime.org

Note: No radiation reaction included here

www.soundsofspacetime.org

Quasi-Elliptic Binary, Radiation Reaction

$$\frac{dE}{dt} = -\frac{32\mu^2 M^3}{5a^5} \frac{1}{(1-e^2)^{7/2}} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right)$$

Combined with $\omega^2 a^3 = M$ E = -

Yields

 $\dot{\omega} = \frac{96}{5} \mathcal{M}^{5/3} \, \omega^{11/3}$

 $\dot{e} = -\frac{304}{15} \mathcal{M}^{5/3} \, \omega^{8/3}$

Good rule of thumb - lose roughly a decade in eccentricity per decade in frequency

$$\Rightarrow \quad \frac{\dot{e}}{e} \approx -\frac{19}{18} \frac{\dot{\omega}}{\omega}$$

$$\frac{dL}{dt} = -\frac{32\mu^2 M^{5/2}}{5a^{7/2}} \frac{1}{(1-e^2)^2} \left(1 + \frac{7}{8}e^2\right)$$

$$\frac{M\mu}{2a} \qquad L^2 = \mu^2 Ma(1-e^2) \qquad e^2 = 1 + \frac{2EL^2}{M^2\mu^3}$$

$$\frac{1}{(1-e^2)}^{7/2} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right)$$

$$/^3 \frac{e}{(1-e^2)^{5/2}} \left(1 + \frac{121}{304}e^2\right)$$

Quasi-Elliptic Binary, Radiation Reaction

www.soundsofspacetime.org

A variety of calculations techniques have been used to extend the waveforms to higher PN order: DIRE, matched asymptotic expansions, EFT...

$$h^{ij} = \frac{2\mu}{R} \left[h_0^{ij} + h_{0.5}^{ij} + h_1^{ij} + h_{1.5}^{ij} + \dots \right]_{TT}$$

$$h_0^{ij} = 2\left[v^i v^j - \frac{M}{r}n^i n^j\right]$$

$$\begin{split} h_{0.5}^{ij} &= \frac{\delta m}{M} \left\{ 3\frac{M}{r} \left[\dot{r}n^{i}n^{j} - 2n^{(i}v^{j)} \right] (\hat{\mathbf{k}} \cdot \hat{\mathbf{n}}) + \left[2v^{i}v^{j} - \frac{M}{r}n^{i}n^{j} \right] (\hat{\mathbf{k}} \cdot \mathbf{v}) \right\} \\ h_{1}^{ij} &= \frac{1}{3}(1 - 3\eta) \left\{ 4\frac{M}{r} \left[3\dot{r}n^{i}n^{j} - 8n^{(i}v^{j)} \right] (\hat{\mathbf{k}} \cdot \hat{\mathbf{n}}) (\hat{\mathbf{k}} \cdot \mathbf{v}) + 2 \left[3v^{i}v^{j} - \frac{M}{r}n^{i}n^{j} \right] (\hat{\mathbf{k}} \cdot \mathbf{v})^{2} \\ &+ \frac{M}{r} \left[(3v^{2} - 15\dot{r}^{2} + 7\frac{M}{r})n^{i}n^{j} + 30\dot{r}n^{(i}v^{j)} - 14v^{i}v^{j} \right] (\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})^{2} \right\} + \frac{4}{3}\frac{M}{r}\dot{r}(5 + 3\eta)n^{(i}v^{j)} \\ &+ \left[(1 - 3\eta)v^{2} - \frac{2}{3}(2 - 3\eta)\frac{M}{r} \right] v^{i}v^{j} + \frac{M}{r} \left[(1 - 3\eta)\dot{r}^{2} - \frac{1}{3}(10 + 3\eta)v^{2} + \frac{29}{3}\frac{M}{r} \right] n^{i}n^{j}, \end{split}$$

$$\begin{split} h_{0.5}^{ij} &= \frac{\delta m}{M} \left\{ 3\frac{M}{r} \left[\dot{r}n^{i}n^{j} - 2n^{(i}v^{j)} \right] (\hat{\mathbf{k}} \cdot \hat{\mathbf{n}}) + \left[2v^{i}v^{j} - \frac{M}{r}n^{i}n^{j} \right] (\hat{\mathbf{k}} \cdot \mathbf{v}) \right\} \\ h_{1}^{ij} &= \frac{1}{3}(1 - 3\eta) \left\{ 4\frac{M}{r} \left[3\dot{r}n^{i}n^{j} - 8n^{(i}v^{j)} \right] (\hat{\mathbf{k}} \cdot \hat{\mathbf{n}}) (\hat{\mathbf{k}} \cdot \mathbf{v}) + 2 \left[3v^{i}v^{j} - \frac{M}{r}n^{i}n^{j} \right] (\hat{\mathbf{k}} \cdot \mathbf{v})^{2} \\ &+ \frac{M}{r} \left[(3v^{2} - 15\dot{r}^{2} + 7\frac{M}{r})n^{i}n^{j} + 30\dot{r}n^{(i}v^{j)} - 14v^{i}v^{j} \right] (\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})^{2} \right\} + \frac{4}{3}\frac{M}{r}\dot{r}(5 + 3\eta)n^{(i}v^{j)} \\ &+ \left[(1 - 3\eta)v^{2} - \frac{2}{3}(2 - 3\eta)\frac{M}{r} \right] v^{i}v^{j} + \frac{M}{r} \left[(1 - 3\eta)\dot{r}^{2} - \frac{1}{3}(10 + 3\eta)v^{2} + \frac{29}{3}\frac{M}{r} \right] n^{i}n^{j}, \end{split}$$

General Binary, Higher Orders

Quasi-Circular Binary, Higher Orders

Energy Flux:

$$\frac{dE}{dt} = -\frac{32}{5}\eta^2 \left(\frac{M}{r}\right)^5 \left\{ 1 - \frac{1}{336}(2927 + 420\eta) \left(\frac{M}{r}\right) - \left[\frac{1}{12}\sum_{i=1,2} \left[\chi_i(\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_i)(73\frac{m_i^2}{M^2} + 75\eta)\right] - 4\pi \right] \left(\frac{M}{r}\right)^{3/2} - \frac{1}{48}\eta\chi_1\chi_2 \left[223(\hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_2) - 649(\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_1)(\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_2)\right] \left(\frac{M}{r}\right)^2 \right\}$$

$$\sum_{1,2} \left[\chi_i (\mathbf{\hat{L}_N} \cdot \mathbf{\hat{s}_i}) (2 \frac{m_i^2}{M^2} + \eta) \right] \left(\frac{M}{r} \right)^{3/2} \\ \mathbf{\hat{s}_2}) - 3(\mathbf{\hat{L}_N} \cdot \mathbf{\hat{s}_1}) (\mathbf{\hat{L}_N} \cdot \mathbf{\hat{s}_2}) \right] \left(\frac{M}{r} \right)^2 \right\}$$

Quasi-Circular Binary, Orbital Decay

Corrected Kepler:

$$\omega^{2}r^{3} = M\left\{1 - (3 - \eta)\left(\frac{M}{r}\right) - \sum_{i=1,2} \left[\chi_{i}(\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_{i})(2\frac{m_{i}^{2}}{M^{2}} + 3\eta)\right]\left(\frac{M}{r}\right)^{3/2} + \left[(6 + \frac{41}{4}\eta + \eta^{2})(2\frac{m_{i}^{2}}{M^{2}} + 3\eta)\right]\left(\frac{M}{r} \cdot \hat{\mathbf{s}}_{i}\right) - \frac{3}{2}\eta\chi_{1}\chi_{2}\left[(\hat{\mathbf{s}}_{1} \cdot \hat{\mathbf{s}}_{2}) - 3(\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_{1})(\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_{2})\right]\left(\frac{M}{r}\right)^{2}\right\}$$

Combining E, dE/dt and corrected Kepler get

$$\dot{\omega} = \frac{96}{5} \mathcal{M}^{5/3} \omega^{11/3} \Biggl\{ 1 - \frac{1}{336} (743 + 924\eta) (M\omega)^{2/3} - \Biggl[\frac{1}{12} \sum_{i=1,2} \Biggl[\chi_i (\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_i) (113 \frac{m_i^2}{M^2} + 75\eta) \Biggr] - 4\pi \Biggr] (M\omega) - \frac{1}{48} \eta \chi_1 \chi_2 \Biggl[247 (\hat{\mathbf{s}}_1 \cdot \hat{\mathbf{s}}_2) - 721 (\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_1) (\hat{\mathbf{L}}_{\mathbf{N}} \cdot \hat{\mathbf{s}}_2) \Biggr] (M\omega)^{4/3} \Biggr\}$$

Quasi-Circular Binary, Orbital Decay

$$t(f) = t_c - \frac{5}{256} \mathcal{M}(\pi \mathcal{M}f)^{-8/3} \left[1 + \frac{4}{3} \left(\frac{743}{336} + \frac{11}{4} \eta \right) (\pi \mathcal{M}f)^{2/3} - \frac{8}{5} (4\pi - \beta)(\pi \mathcal{M}f) + 2 \left(\frac{3058673}{1016064} + \frac{5429}{1008} \eta + \frac{617}{144} \eta^2 - \sigma \right) (\pi \mathcal{M}f)^{4/3} \right]$$

$$\Phi(f) = \Phi[t(f)] = \Phi_c - \frac{1}{16} (\pi \mathcal{M}f)^{-5/3} \left[1 + \frac{5}{3} \left(\frac{743}{336} + \frac{11}{4} \eta \right) (\pi \mathcal{M}f)^{2/3} - \frac{5}{2} (4\pi - \beta)(\pi \mathcal{M}f) + 5 \left(\frac{3058673}{1016064} + \frac{5429}{1008} \eta + \frac{617}{144} \eta^2 - \sigma \right) (\pi \mathcal{M}f)^{4/3} \right]$$

$$\beta = \frac{1}{12} \sum_{i=1}^{2} \left[113 \left(\frac{m_i}{M} \right)^2 + 75 \frac{\mu}{M} \right] \frac{\mathbf{\hat{L}} \cdot \mathbf{S}_i}{m_i^2}$$

 $\sigma = \frac{\mu}{48M(m_1^2 m_2^2)} [721(\mathbf{\hat{L}} \cdot \mathbf{S}_1)(\mathbf{\hat{L}} \cdot \mathbf{S}_2) - 247(\mathbf{S}_1 \cdot \mathbf{S}_2)]$

Quasi-Circular Binary, Spin Precession

Quasi-Circular Binary, Spin Precession

www.soundsofspacetime.org

Beyond Post Newtonian

Numerical Relativity

(3+1) decomposition

Evolution equations:

 $\partial_t \gamma_{ij} = -2\alpha K_{ij} + \nabla_i \beta_j + \nabla_i \beta_j$

Constraint equations:

 $R + K^2 = K_{ij}K^{ij}$

$$g_{tt} = -\alpha^2 + \beta_i \beta^i \qquad \qquad g_{ti} = \gamma_{ij} \beta^j \qquad \qquad g_{ij} = \gamma_{ij}$$

$$\nabla_{j}\beta_{i} \qquad \partial_{t}K_{ij} = -\nabla_{j}\nabla_{i}\alpha + \alpha \left(R_{ij} + KK_{ij} - 2K_{im}K_{im}K_{ij} + \beta^{m}\nabla_{m}K_{ij} + K_{im}\nabla_{j}\beta^{m} + K_{mj}\nabla_{i}K_{ij}\right)$$

$$\nabla_j K_i^j = \nabla_i K$$

Numerical Relativity

= 0.06 = 0.033 + 1 + 1 = 0.055 + 1 + 1 + 1 = 0.063 + 1 + 1 + 1
$ \begin{array}{c} = -0.06 \\ \hline \\ 2 \\ t/1000M \end{array} \begin{array}{c} + \\ 2 \\ t/1000M \end{array} \begin{array}{c} + \\ 1 \\ t/1000M \end{array} \begin{array}{c} + \\ t/1000M \end{array} $

Effective One-body

Inspiral post-Newtonian (PN) theory Effective-one-body (EOB)

Re-summation of the PN expansion attached to quasi-normal modes of a perturbed black hole

Self-force, EMRI

[Review: A. Pound, Equations of Motion in Relativistic Gravity (Book), 399 - 486, Springer]

MiSaTaQuWa Equation

 $u^{\mu}\nabla_{\mu}u^{\nu} = -(g^{\nu\kappa} + u^{\nu}u^{\kappa})(\nabla_{\alpha}h^{\text{tail}}_{\kappa\gamma} - \frac{1}{2}\nabla_{\kappa}h^{\text{tail}}_{\gamma\alpha})u^{\gamma}u^{\alpha}$

Detweiler-Whiting Equation

$$u^{\mu}\nabla_{\mu}u^{\nu} = -(g^{\nu\kappa} + u^{\nu}u^{\kappa})(\nabla_{\alpha}h^{\text{Reg}}_{\kappa\gamma} - \frac{1}{2}\nabla_{\kappa}h^{\text{Reg}}_{\gamma\alpha})u^{\gamma}u^{\alpha}$$

Self-force, EMRI

Steve Drasco Max Planck Institute for Gravitational Physics (Albert Einstein Institute) sdrasco@aei.mpg.de

Physics and Sources of Gravitational Waves

Neil J. Cornish

Part 2. Gravitational Wave Sources

Ingredients:

• Large amount of mass/energy (any type will do).

Directions:

• Squish into a small, lumpy blob. (two blobs work better)

• Shake or stir vigorously.

Sun-like Star

Red Giant

Billions of Vears

Star-Forming Nebula

Planetary Nebula

•

White Dwarf

Massive Star

(more than 8 to 10 times the mass of our Sun)

Millions of Years

Protostars

Neutron Star

Supernova

Red

Supergiant

 \mathbf{O}

Black Hole

Circular, low, aligned spins?

Field

Circular, moderate, mis-aligned spins?

Stellar remnant binaries - formation channels for BHBs

Cluster

Eccentric?

Disk

Stellar remnant binaries - formation channels for NSNS & NSBH

Possible NSNS channel

Possible NSBH channels

Resolving features in the BH mass distribution

[LIGO/Virgo 2111.03634]

 $m_1 \left[M_\odot
ight]$

Spin distribution

$$\chi_{\text{eff}} = \frac{m_1(\boldsymbol{\chi}_1 \cdot \hat{\mathbf{L}}) + m_2(\boldsymbol{\chi}_2 \cdot \hat{\mathbf{L}})}{m_1 + m_2}$$

[LIGO/Virgo 2111.03634]

$$\chi_{\rm p} = \frac{1}{2} \left(\chi_{2\perp} + \alpha \, \chi_{1\perp} + |\chi_{2\perp} - \alpha \, \chi_{1\perp} \right)$$

$$\alpha = \left(\frac{m_1}{m_2}\right) \frac{(4M - m_2)}{(4M - m_1)}$$

Things we haven't heard yet. Core Collapse SN

PulsarTiming

 $\land \land$

 $\mathbf{\Lambda}$

Complications....

 \bigwedge

Main target: Super massive black hole binaries

Gravitational Wave Induced Correlations Between Pulsars

Slide by Steven Taylor

Gravitational Wave Induced Correlations Between Pulsars

Slide by Steven Taylor

The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background

Anisotropy

So what is causing the signal?

Individual loud sources

Hint of a black hole binary signal at 4 nHz

NANOGrav

2306.16222

Exotic Sources

Topological defects

Phase transitions- bubble nucleation, cavitation, collisions

Braneworlds

Pre-heating/Re-heating

Warped extra dimensions

LISA Sources

Part 3. Decoding the Data

Spacecraft tracking

Laser Interferometers

Time of flight computed in TT gauge

$$\frac{(\hat{a} \otimes \hat{a}) : \mathbf{H}[u_1, u_2]}{2(1 - \hat{k} \cdot \hat{a})} \qquad (u = k_{\alpha})$$

Here \hat{a} is a unit vector along the detector arm and \hat{k} is the GW propagation direction

$$\mathbf{h}^{u_2} \mathbf{h}^{(u)} du \qquad \mathbf{h} = h_+(u) \,\epsilon^+ + h_\times(u) \,\epsilon^\times$$

General coordinate system

 $\hat{n} = \sin \theta \cos \phi \, \hat{x} + \sin \theta \sin \phi \, \hat{y} + \cos \theta \, \hat{z}$ $\hat{u} = \cos \theta \cos \phi \, \hat{x} + \cos \theta \sin \phi \, \hat{y} - \sin \theta \, \hat{z}$ $\hat{v} = \sin \phi \, \hat{x} - \cos \phi \, \hat{y}$

$$\mathbf{e}^{+} = \hat{u} \otimes \hat{u} - \hat{v} \otimes \hat{v}$$
$$\mathbf{e}^{\times} = \hat{u} \otimes \hat{v} + \hat{v} \otimes \hat{u}$$

$$\mathbf{h} = h_{+}\boldsymbol{\epsilon}^{+} + h_{\times}\boldsymbol{\epsilon}^{\times}$$

$$\begin{aligned} \boldsymbol{\epsilon}^+ &= \hat{p} \otimes \hat{p} - \hat{q} \otimes \hat{q} \\ &= \cos 2\psi \, \mathbf{e}^+ - \sin 2\psi \, \mathbf{e}^\times \end{aligned}$$

$$\begin{aligned} \boldsymbol{\epsilon}^{\times} &= \hat{p} \otimes \hat{q} + \hat{q} \otimes \hat{p} \\ &= \sin 2\psi \, \mathbf{e}^{+} + \cos 2\psi \, \mathbf{e}^{\times} \end{aligned}$$

Example: Laser interferometer in the long wavelength limit

end mirror I

 $\Delta T(t) = \Delta \tau_{12} + \Delta \tau_{24} - \Delta \tau_{13} - \Delta \tau_{34}$

 $h(t) \equiv \frac{\Delta T(t)}{2L} \approx \frac{1}{2} \left[\hat{a} \otimes \hat{a} - \hat{b} \otimes \hat{b} \right] : \mathbf{h}(t)$

Detector tensor

 $\mathbf{h}(t) = h_{+}(t)\boldsymbol{\epsilon}^{+} + h_{\times}(t)\boldsymbol{\epsilon}^{\times}$

Polarization tensors

Antenna Pattern Functions

 $\hat{n} = \sin \theta \cos \phi \, \hat{x} + \sin \theta \sin \phi \, \hat{y} + \cos \theta \, \hat{z}$ $\hat{u} = \cos \theta \cos \phi \, \hat{x} + \cos \theta \sin \phi \, \hat{y} - \sin \theta \, \hat{z}$ $\hat{v} = \sin \phi \, \hat{x} - \cos \phi \, \hat{y}$

$$\mathbf{e}^{+} = \hat{u} \otimes \hat{u} - \hat{v} \otimes \hat{v}$$
$$\mathbf{e}^{\times} = \hat{u} \otimes \hat{v} + \hat{v} \otimes \hat{u}$$

$$(\hat{a} \otimes \hat{a}) : \mathbf{e}^+ = \cos^2 \theta \cos^2 \phi - \sin^2 \phi$$

 $(\hat{a} \otimes \hat{a}) : \mathbf{e}^{\times} = \cos\theta\sin 2\phi$

 $(\hat{b}\otimes\hat{b}):\mathbf{e}^+ = \cos^2\theta\sin^2\phi - \cos^2\phi$

 $(\hat{b}\otimes\hat{b}):\mathbf{e}^{\times} = -\cos\theta\sin2\phi$

Antenna Pattern Functions

 $\hat{n} = \sin \theta \cos \phi \, \hat{x} + \sin \theta \sin \phi \, \hat{y} + \cos \theta \, \hat{z}$ $\hat{u} = \cos \theta \cos \phi \, \hat{x} + \cos \theta \sin \phi \, \hat{y} - \sin \theta \, \hat{z}$ $\hat{v} = \sin \phi \, \hat{x} - \cos \phi \, \hat{y}$

$$\mathbf{e}^{+} = \hat{u} \otimes \hat{u} - \hat{v} \otimes \hat{v}$$
$$\mathbf{e}^{\times} = \hat{u} \otimes \hat{v} + \hat{v} \otimes \hat{u}$$

$$h = F^+ h_+ + F^\times h_\times$$

$$F^{+} = \frac{1}{2}(\hat{a} \otimes \hat{a} - \hat{b} \otimes \hat{b}) : \epsilon^{+}$$
$$= \frac{1}{2}(1 + \cos^{2}\theta)\cos(2\phi)\cos 2\psi - \cos\theta\sin 2\phi\sin 2\phi$$

$$F^{\times} = \frac{1}{2}(\hat{a} \otimes \hat{a} - \hat{b} \otimes \hat{b}) : \epsilon^{\times}$$
$$= \frac{1}{2}(1 + \cos^2 \theta) \cos(2\phi) \sin 2\psi + \cos \theta \sin 2\phi \cos 2\psi$$

Antenna Pattern Functions

 $F = \sqrt{F_+^2 + F_\times^2}$

Polarization averaged

Time of Arrival Triangulation

LIGO Hanford + LIGO Livingston

LIGO Hanford + LIGO Livingston + Virgo

Triangulating the Source

Hanford

Triangulating the Source

Hanford + Livingston

Hanford + Livingston + Virgo

Triangulating the Source

Laser Interferometer Space Antenna

Low frequency response

Data Analysis 101

data

 $p(d|h) = p(d-h) = \frac{1}{(\det(2\pi\mathbf{C}))^{N/2}} e^{-\frac{1}{2}(d_i - h_i)C_{ij}^{-1}(d_j - h_j)}$

Likelihood

Gravitational wave signal types = priors on h

Well modeled - e.g. binary inspiral and merger

Poorly modeled - e.g. core collapse supernovae

Stochastic-e.g. phase transition in early universe

0.2

Bayesian Inference

Prior p(h|M)6 MCMC

Likelihood p(d|h)

p(d|M)Evidence

p(h|d, M)Posterior

GW150914

H-L Time delay 7 ms H-L Phase Shift 2.9 radians H-L Amplitude ratio 1.24

Piper Morris

Aiden Gunsderson

- Millions of overlapping signals
- Unknown number of detectable sources
- Non-stationary and non-Gaussian noise
 - Data gaps and disturbances
- Time varying instrument response Ο
- Complex signals, multiple harmonics \mathbf{O}

LISA is not LIGO in Space

LISA Global Fit - Simultaneously fitting tens of thousands of signals and noise

