Current and Future Gravitational Wave Detectors

Artist: Eddie Anaya (Cal State Fullerton)

Santa Cruz, CA, July 21/22 Stefan Ballmer

D

Please do interrupt me with question

- This is your talk
- Zoom makes it hard enough So don't hesitate to speak up!

Outline

• Day 1

- Gravitational waves from an Experimentalist View
 - History of the field
- How can you measure them in principle?
 - Scale of effect
 - How to read out such small motions (Classical Shot Noise)
 - How to isolate all other large motion (Seismic isolation, Newtonian noise, Thermal Noise)
- How is Advanced LIGO doing in O4?
- Day 2
 - Key Technologies for the Future
 - Beyond Quantum Noise (Quantization of EM field, squeezing)
 - Cosmic Explorer: the Next-generation of US GW detectors
- Will not talk about sources
 - See presentations from Jim Lattimer and Neil Cornish for that

154

Gesamtsitzung vom 14. Februar 1918. - Mitteilung vom 31. Januar

Über Gravitationswellen.

Von A. EINSTEIN.

(Vorgelegt am 31. Januar 1918 [s. oben S. 79].)

Die wichtige Frage, wie die Ausbreitung der Gravitationsfelder erfolgt, ist schon vor anderthalb Jahren in einer Akademiearbeit von mir behandelt worden¹. Da aber meine damalige Darstellung des Gegenstandes nicht genügend durchsichtig und außerdem durch einen bedauerlichen Rechenfehler verunstaltet ist, muß ich hier nochmals auf die Angelegenheit zurückkommen.

Wie damals beschränke ich mich auch hier auf den Fall, daß das betrachtete zeiträumliche Kontinuum sich von einem »galileischen« nur sehr wenig unterscheidet. Um für alle Indizes

"... is disfigured by a regrettable calculation error..."

Signal Amplitude

 For 2 1.4M_{Sun} Neutron stars, at 1 Mpc (3 million light years):

$$h = \frac{dL}{L} \approx 3 \times 10^{-21}$$

Signal Amplitude

A strain of $h=3x10^{-21}$:

The Center of our Galaxy is L=27000lyr: dL ~ 1 meter
The nearest star is L=4.2 light years away: dL ~ 0.1 millimeter
Over a LIGO arm cavity, L=4km=13usec:

dL ~ 0.01 femtometer

Signal Amplitude

Before 1957

LIGO

"... in all imaginable cases A must have a practically vanishing value.

ein. Man erhält aus ihm also die Ausstrahlung A des Systems pro Zeiteinheit durch Multiplikation mit $4\pi R^2$:

$$A = \frac{\varkappa}{24\pi} \sum_{\alpha\beta} \left(\frac{\partial^3 J_{\alpha\beta}}{\partial t^3} \right)^2$$
(21)

Würde man die Zeit in Sekunden, die Energie in Erg messen, so würde zu diesem Ausdruck der Zahlenfaktor $\frac{1}{c^4}$ hinzutreten. Berücksichtigt man außerdem, daß $z = 1.87 \cdot 10^{-27}$, so sieht man, daß A in allen nur denkbaren Fällen einen praktisch verschwindenden Wert haben muß.

Josh Goldberg in 1957

Josh was working at Wright Patterson AFB. In addition to his own research (searching for antigravity?), he was the funding officer for the USAF's support for research in relativity.

Josh made it possible for relativity to thrive worldwide.

Josh Goldberg, Syracuse University

LIGO

The Chapel Hill Conference

In January 1957, Josh sponsored the Conference on the Role of Gravitation in Physics, a.k.a. the Chapel Hill Conference, a.k.a. GR1. The organizers were Bryce and Cecile DeWitt. 44 of the world's leading relativists attended.

Much of the future of gravitational physics was launched then. (Numerical relativity was prefigured in a remark by Charles Misner.)

The "gravitational wave problem" was solved there, and the quest to detect gravitational waves was born.

LIGO-G1200429-v4

This Resonant Bar Gravitational-Wave Antenna, developed by Professor Joseph Weber, is a gift from the University of Maryland

1972: Gravitational Wave Antenna

- Electromagnetically coupled broad-band gravitational wave antenna, R.Weiss, MIT RLE QPR 1972
- Use a laser to compare the length of the interferometer arms!

1972

2017

LIGO

MIT Research Laboratory of Electronics Quarterly Progress Report 1972

The antenna arms can be made as large as is consistent with the condition that the travel time of light in the arm is less than one-half the period of the gravitational wave that is to be detected. This points out the principal feature of electromagnetically coupled antennas relative to acoustically coupled ones such as bars; that an electromagnetic antenna can be longer than this acoustic counterpart in the ratio of the speed of light to the speed of sound in materials, a factor of 10⁵. Since it is not the strain but rather the differential displacement that is measured in these gravitational antennas, the proposed antenna can offer a distinct advantage in sensitivity relative to bars in detecting both broadband and single-frequency gravitational radiation. A significant improvement in thermal noise can also be realized.

Relativistic Binary Pulsar B1913+16

- First binary Pulsar
 - Spinning neutron star with radio beacon
- Discovered in 1974
- Loses energy by radiating gravitational waves

R. A. Hulse J. H. Taylor

Relativistic Binary Pulsar B1913+16

- Nobel prize in 1993
- Orbital parameters measured for 30yr!
- Energy loss agrees with GW emission
- Standard source for GW observatories

 Merges in 300Myr

The interferometer

Measuring Power

- Interferometer translates length fluctuations into laser power fluctuations
- What is the limit on how precisely we can measure laser power?
- Light is quantized
 - Shot noise!

Shot noise (classical) N: Nomber of guarta ti i Random photon arrival times A: Vit of quanta Pulse train p(t): T: observation time $P(t) = \sum_{i=1}^{N} A \delta(t - \epsilon_i)$ n:= < p(r)) = = NA rate quantity. e-i2TC f 6; Note: Fourier transform of \mathcal{S} -function X Solf) = constling) ℓ_{i} are random ==> phases are random and will average out ==> power spectrum will be white $R(T) = \frac{t}{T} \int_{-T}^{T_{k}} dt \ p(t) \ p(t+T) = \frac{t}{T} \sum_{T}^{N} \sum_{K}^{N} A^{2}S(t_{j}-t_{K}+T)$ Auto-correlation function: Power spectral density is the Fourier transform of the Auto-correlation function: $S_{pp}^{2-sided}(\mathbf{f}) = \int R_{pd}(t) e^{-2\pi i \mathbf{f} t} dt = \frac{A^2}{T} \sum_{\substack{r=1 \\ r=1 \\ k=1}}^{N} e^{-2\pi i \mathbf{f} t} \left(f_{i} - f_{k} \right) = \frac{A^2}{T} \sum_{\substack{r=1 \\ r=1 \\ k=1}}^{N} e^{0} + \sum_{\substack{r=1 \\ r=1 \\ k=1}}^{N} e^{-2\pi i \mathbf{f} t} \left(f_{i} - f_{k} \right) = \frac{A^2 N}{T} = n A$ One-sided PSD (only positive frequencies): Amplitude Spectral Density: Spp (1) = 2 n A Sp (4) = 2 n A

Arm Length

- At DC: dx = L h
- But h(t) changes → if L is too long, the interrogation time is too long, and we start averaging. Roughly at L=λ/4
- At 100Hz: λ/4 = 750km
- At 1kHz: $\lambda/4 = 75$ km
- No easy way to adjust effective length

Arm Cavities

- Instead of extremely long arm we can use a partially reflective input mirror (ITM) in the arm
 → Fabry-Perot cavities
- Enhances phase sensitivity
- Allows for shorter arms
- Interrogation time set by input mirror (and signal extraction mirror...)
- But increases mirror thermal noise (more on that later)

Interferometer Sensitivity

...do we isolate from any other motion?

Seismic Noise

Motion
Active insolation system
Reach accelerometer sensor noise in observation band

Ground

 Make the platform follow the ground at low frequencies using displacement sensors

Quad-Pendulum Suspensions

We can do better than $\frac{l}{l^2}$: Hang Pendulum from pendulum, etc (4 timed for Advanced LIGO)

Coupled system, four resonance frequencies, choose masses wisely.

Above highest resonance \Rightarrow transfer function $\frac{x}{x_0}$ drops off as $\frac{1}{t^8}$

• Suspension platform motion (from active seismic isolation): $\sim 2 \cdot 10^{-13} \frac{m}{\sqrt{H_2 l}} @ 15 H_2$

Target noise floor:

Highest resonance frequency: =) ~ 2,3 H_Z

~ q.10-20 m @ 15142

×0

 $\stackrel{\bullet}{\leftrightarrow}$ m

The Advanced LIGO Detectors Seismic Isolation

Newtonian Noise: Bypassing the Isolation System

Vibrational coupling can be filtered or suppressed

Gravitational coupling cannot be shielded

- couples as 1/f²
- steeper drop-off from source coherence

Novel seismometers, e.g.:

...do we isolate from any other motion?

Thermal Noise

Thermal Noise: Fluctuation Dissipation Theorem Motivation

Damped harmonic oscillator $m \times + gr \times + k \times = F$

Assume $F=0 \implies x(t)$ damps out. Energy conservation?

Equipartition theorem:

$$\frac{k_B T}{2} \implies \langle x^2 \rangle = \frac{k_B T}{m}$$

Contradiction! F cannot be zero. It has to be non-zero, but random!

Express RMS velocity as integral of its power spectrum:

$$\langle \dot{x}^2 \rangle \equiv \int_{x \times x}^{\infty} (f) df = \frac{4k_B}{4m}$$

Can we generalize the inverse mass, and express it as an integral over frequencies???

 $Z \dot{x} = F$

Introduce impedance Z, via

For damped harmonic oscillator:

Indeed we have:

cillator: $Z = i \omega m + \partial + \frac{k}{i\omega}$ $= \int_{0}^{\infty} \frac{\partial u}{\partial t^{2} + (2\pi fm - \frac{k}{i\pi f})^{2}} df$ $= \int_{0}^{\infty} \frac{\partial v}{\partial t^{2} + (2\pi fm - \frac{k}{i\pi f})^{2}} df$ $= \int_{0}^{\infty} \frac{\partial v}{\partial t^{2} + (2\pi fm - \frac{k}{i\pi f})^{2}} df$

Thermal Noise: Fluctuation Dissipation Theorem

This equation holds for the integrated at all frequencies:

 $= 4 k_{g} T Re (Z^{-1})$ 5. (f)

Velocity Power Spectral Density (1-sided)

Real part of the inverse of the mechanical impedance

Temperature of the heat bath

· Holds for all (mechanical) systems coupled to a heat bath.

The physical coupling responsible for damping the motion also has to work in reverse, driving the system.

· Can be generalized to multiple mechanical degrees of freedom, cross-power-spectra, etc.

Note:

 x and F are a pair of conjugate thermodynamic variables. Indeed the FD theorem can me generalized for any pair of conjugate TD variables: (Pressure, Volume), (Temperature, Entropy), (Chem. potential, Particle N)

Every pair of TD variables generates statistically independent thermal noise.

Fluctuation Dissipation Theorem - Other Forms **Displacement Fluctuation Power Spectrum** $S_{\dot{x}\,\dot{x}}(f) = 4k_{g}T Re(Z^{-1})$ $S_{xx}(t) \equiv \langle x x^{t} \rangle = \frac{1}{-i \cdot i} \frac{1}{\omega^{2}} \langle x x^{t} \rangle$ Sxx(P) $\Rightarrow S_{xx}(t) = \frac{4k_BT}{k_BT} Re(Z^{-1})$ Force Fluctuation Power Specrum $S_{re}(t) \equiv \langle F F^{t} \rangle = \langle z \times x^{t} z^{t} \rangle$ $= 4k_{B}T \quad Z \quad Re(Z^{-1}) \quad Z^{+}$ = 4 KB T . 1 (22-"Z" +2Z-"TZ") $= 4 k_R T Re(Z)$ $\Rightarrow S_{FF}(f) = 4k_B T Re(Z)$ $\implies S_{FF}(4)$ is white $\Leftrightarrow e^{-\mathcal{R}Z}$ is independent of frequency

Thermal Noise - Basics

Fluctuation-dissipation theorem: It's the loss!
 – Equipartition theorem.:

 $\frac{1}{2}m\langle \dot{x}^2\rangle = \frac{k_BT}{2}$ VS.

$$m\ddot{x} + \gamma \ \dot{x} + kx = F_{\text{noise}}$$

• Fluctuation-dissipation theorem

$$S_{\nu\nu}(f) = 4k_BT \frac{P_{\rm diss}(f)}{\langle F^2 \rangle}$$

The energy loss per cycle (normalized by the driving force squared) is proportional to the velocity power spectrum

Suspension Thermal Noise

- **Dominated** by last suspension stage
 - Thermal noise from upper stages filtered by remaining suspension stages
- Most potential energy stored by gravity
 → mechanical loss diluted
- SiO2 has extraordinary low mechanical loss at room temperature!
 - → Monolithic bottom stage

Coating Thermal Noise

- Dielectric Mirror Coating dominates mechanical loss (TiO₂-doped Ta₂O₅ SIO₂)
- Mirror coating interacts directly with laser light, no extra filtering possible
- Need better coating material!

TiO₂:GeO₂ / SiO₂ coatings

- Germania (GeO₂) has loss angle ~4e-5
 - similar to Silica (SiO₂)
 - much lower than Tantala (Ta_2O_5)
- But:
 - Refractive index of Germania 1.6
 - 2.1 for Tantala
 - 1.45 for Silica
- Can achieve ~30% thermal noise amplitude reduction
- Candidate for A+ upgrade

Crystalline AlGaAs coatings

- The crystal is grown via Molecular Beam Epitaxy (MBE) on a single-crystal GaAs wafer.
- Alternating the Al alloy composition forms a Bragg reflector from layers of Al_{0.92}Ga_{0.08}As (n=2.89) and GaAs (n=3.30).
- \blacktriangleright Limited to $\lambda > 870$ nm

Satoshi Tanioka Steve Penn

4

O4 Run: Advanced LIGO is working at its original Design Sensitivity 160 Mpc BNS Range

Black Hole mergers observed almost daily...

Photo: Robert Ward / Stefan Ballmer (2016/03/12)

Pre-Stabilized Laser

- 2 W 140 W 70 W 28
- 2W NPRO seed laser, 2 neoVAN-4S-HP amplification stages
- Delivers 110W to vacuum system

Credit: Elenna Capote and LIGO

O4 Events

• <u>https://gracedb.ligo.org/superevents/public/O4</u>

Event ID	Possible Source (Probability)	UTC	GCN	Location	FAR	Comments
5231114n	88H (>99 N)	Nov. 14, 2023 04:32:11 UTC	GCN Circular Query Notices VOE	Ģ	1 per 100.04 years	
5231113bw	88H (96%), Terrestrial (4%)	Nov. 13, 2023 20:04:17 UTC	GCN Circular Query Notices VOE		1 per 2.3265 years	
523111366	BBH (96%), Terrestrial (4%)	Nov. 13, 2023 12:26:23 UTC	GCN Circular Query Notices VOE	(1.7663 per year	
5231112og	88H (>994)	Nov. 12, 2023 11:02:03 UTC	GCN Circular Query Notices VOE	4	1 per 2.9871e+06 years	RETRACTED
5231110g	BBH (97%), Terrestrial (3%)	Nov. 10, 2023 04:03:20 UTC	GCN Circular Query Notices VOE		1 per 1.6429 years	
5231108u	88H (>99 N)	Nov. 8, 2023 12:51:42 UTC	GCN Circular Query Notices VOE		1 per 100.04 years	
5231104oc	88H (>99%)	Nov. 4, 2023 13:34:18 UTC	GCN Circular Query Notices VOE		1 per 100.04 years	
5231102w	BBH (>99%)	Nov. 2, 2023 07:17:36 UTC	GCN Circular Query Notices VOE	\mathbf{i}	1 per 5.4281e+14 years	
5231030av	BNS (93%), NSBH (6%), Terrestrial (1%)	Oct. 30, 2023 1251:11 UTC	GCN Circular Query Notices VOE		1.3301 per year	RETRACTED
5231029y	88H (>99%)	Oct. 29, 2023 11:15:08 UTC	GCN Circular Query Notices VOE		1 per 146.45 years	
5231028bg	88H (>99%)	Oct. 28, 2023 15:30:06 UTC	GCN Circular Query Notices VOE	(1 per 4.1513e+22 years	
5231020bw	88H (> 39M)	Oct. 20, 2023 18:05:09 UTC	GCN Circular Query Notices VOE	(1 per 91.785 years	
5231020ba	88H (91%), NSBH (8%)	Oct. 20, 2023 14:29:47 UTC	GCN Circular Query Notices VOE		1 per 25.01 years	
5231014r	88H (99%)	Oct. 14, 2023 04:05:32 UTC	GCN Circular Query Notices VOE		1 per 3.0666 years	
5231008ap	88H (>99%)	Oct. 8, 2023 14:25:21 UTC	GCN Circular Query Notices VOE		1 per 20.718 years	57

0 B S E R V I N C 01 2015 - 2016			02 2016 - 2017		Obse	ervat	tions				03a+b 2019 - 2020	
36 31 23	14	14 77	31 20	11 7.6	50 34	35 24	31 25	15 1.3	35 27	40 29	88 - 22	25 18
63	36	21	49	18	80	56	53	≤2.8	60	65	105	41
cwrisoan4 c	owision2	GW151226	GW170104	cwizocos	GW170729	cw170809	GW170814	cwr70817	сwr708i8	CW170823	GW190403_051519	cwi90408_181802
30 8.3 35	24	48 32	41 32	2 1.4	107 77	43 28	23 13	36 18	39 28	37 25	66 41	95 69
37	56	76	70	3.2	175	69	35	52	65	59	101	156
cwi90412 cwi9	90413_052954 G	W190413_134308	CW190421 213856	GW190425	GW190426,190642	CW190503.185404	GW190512_180714	cw190513.205428	GW190514_065416	GW190517,055101	CW190519_153544	cw190521
42 33 37	23	69 48	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71	56	111	87	56	90	99	19	30	55	20	17	64
GW190521_074359 GW19	90527_092055 G	w190602_175927	GW190620_030421	GW190630_185205	GW190701_203306	CW190706_222641	cw190707_093326	GW190708_232457	GW190719_215514	GW190720_000836	GW190725_174728	сw190727_060333
12 8.1 42	29	37 27	48 32	23 2.6	32 26	24 10	44 36	35 24	44 24	9.3 2.1	8.9 5	21 16
20	67	62	76	26	55	33	76	57	66	11	13	35
cwrj90728_064510 cwrj9	90731_140936 CN	w190803_022701	сw190805_211137	CW190814	GW190828_063405	GW190828_065509	сw190910_112807	CW190915_235702	CW190916_200658	GW190917.114630	GW190924_021846	OW190925-232845
40 23 81	0 ²⁴	12 7.8	12 7.9	11 7.7	65 47	29 5.9	12 8.3	53 24	11 6.7	27 19	12 8.2	25 18
61	102	19	19	18	107	34	20	76	17	45	19	41
cw190926_050336 cw19	90929_012149 C	W190930_133541	cw1a1103_012549	GW19R05_143521	CW191109_010717	GW191113_071753	GW191126_115259	Gw191127,050227	CW191129_134029	GW191204_110529	cwi91204_177526	GW191215_223052
12 7,7 31 19 GW191216_213338 GW19	1.2 32 191219_163120 G	45 35 76 W191222_033537	⁴⁹ 37 82 cwi91230_180458	9 1.9 11 GW200105_162426	36 28 61 GW200112_155838	5.9 1.4 7.2 GWZ00115_042309	42 33 71 GW200128_022011	34 29 60 GW200129_065458	10 7.3 17 GW200202_154313	38 27 63 GW200208_130117	51 12 61 GW200208_222617	36 27 60 GW200209_085452
0 24 2.8 51 27 CW200210.092254 CW20	30 78 00216.220804 G1	38 28 62 w2002J9_094415	87 61 141 CW200220_061928	39 28 64 GW200220_124850	40 33 69 GW200224_222234	19 14 32 GW200225_060421	38 20 56 Gw200302_015811	28 15 42 GW200306_093714	36 14 47 GW200308_173609	34 28 59 Gw200311_115853	13 7.8 20 GW200316_215756	34 14 53 GW200322-091133

Features in the Black Hole mass spectrum

Observations clustered in chirp mass

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

 Chirp mass is the combination of masses which is best measured

- Over-density between $8M_{\odot}$ and $10M_{\odot}$ and around $26M_{\odot}$.
- A weaker feature present at around $14 M_{\odot}$
- Absence of mergers with chirp masses between $10M_{\odot}$ and $12M_{\odot}.$

Credit: S. Fairhurs

Syracuse University team in the Hanford Control Room (3/9/2024)

O4 Commissioning Break

- LIGO Hanford Output Mode Cleaner
- LIGO Livingston End Test Mass cleaning
- Squeezer path work
- New scattered light baffles and baffle dampeners
- Resume observations Apr 3rd

Where do we go from here?

"Recently, we have waded a little out to sea, enough to dampen our toes or, at most, wet our ankles. The water seems inviting. The ocean calls."

Carl Sagan

Outline

• Day 1

- Gravitational waves from an Experimentalist View
 - History of the field
- How can you measure them in principle?
 - Scale of effect
 - How to read out such small motions (Classical Shot Noise)
 - How to isolate all other large motion (Seismic isolation, Newtonian noise, Thermal Noise)
- How is Advanced LIGO doing in O4?
- Day 2
 - Key Technologies for the Future
 - Beyond Quantum Noise (Quantization of EM field, squeezing)
 - Cosmic Explorer: the Next-generation of US GW detectors
- Will not talk about sources
 - See presentations from Jim Lattimer and Neil Cornish for that

Quantum noises

Shot noise (photon counting on detector) ⇒ *need high optical power*

Radiation pressure noise (photon momentum) ⇒ *need heavy test masses*

Quantization of Maxwell Equation

Maxwell equation c = 1, $\varepsilon_0 = 1$, $P_0 = 1$ $\vec{E} = \vec{\nabla} \times \vec{B}$ \implies Interpret at collection of harmonic oscillators, one at each frequency $\omega_0 = \vec{R}$ $\vec{B} = -\vec{\nabla} \times \vec{E}$ For simplicity, assume plane wave, $\vec{e} \parallel \vec{2}$, $\vec{E} \parallel \hat{x}$, $\vec{B} \parallel \hat{z}$ Switch to scalar amplitudes $\vec{E} = -B^{\dagger}$ $\vec{B} = -E^{\dagger}$

But for plane wave we know $\mathcal{E} = \mathcal{B}$ and they are in phase.... what is going on?

Two Quadratures:

 $E = E_{10} \cos (kz - \omega t) + E_{20} \sin (kz - \omega t)$ $= Re \left((E_{10} + iE_{10}) e^{i\omega t} e^{-kz} \right)$ $= : Re \left(X(t) e^{-ikz} \right)$

complex field amplitude X = X1 + i X2

Note: Maxwell equation respects quadratures.

" Phasos "

Coherent State I (Fox 7.5)

- Quantum mechanical equivalent to classical monochromatic EM wave is coherent state $|\alpha>$
- For linearly polarized mode in cavity volume *V*, $\alpha = X_1 + iX_2$
- Can separate into amplitude and phase $\alpha = |\alpha| e^{i\phi}$ with $|\alpha| = \sqrt{X_1^2 + X_2^2}$ and $X_1 = |\alpha| \cos \phi$ and $X_2 = |\alpha| \sin \phi$, α can be represented with phasor length $|\alpha|$, angle ϕ
- Coherent state is a minimum uncertainty state so $\Delta X_1 = \Delta X_2 = \frac{1}{2}$ (shaded circle)
- Relating with $E_{\text{classical}} = \bar{n}\hbar\omega$, find $|\alpha| = \sqrt{n}$

Fig. 7.5 Phasor diagram for the coherent state $|\alpha\rangle$. The length of the phasor is equal to $|\alpha|$, and the angle from the X_1 -axis is the optical phase ϕ . The quantum uncertainty is shown by a circle of diameter 1/2 at the end of the phasor.

Mark Fox, Quantum Optics

Shot Noise (Fox 7.6)

• Average phasor length α , circle diameter is 1/2, length of phasor uncertain between ($\alpha + 1/4$) and ($\alpha - 1/4$)

•
$$\Delta n = (|\alpha| + 1/4)^2 - (|\alpha| - 1/4)^2 = |\alpha| = \sqrt{\bar{n}}$$

 coherent states have Poissonian photon statistics and shot noise (from light's quantum uncertainty)

For large $|\alpha|$, phase uncertainty is $\Delta \phi = \frac{1/2}{\sqrt{\bar{n}}}$

• These give number-phase uncertainty of light, $\Delta n \Delta \phi \geq -$

Fig. 7.6 The uncertainty circle of a coherent state $|\alpha\rangle$ introduces both photon number and phase uncertainty. Note that the phase uncertainty $\Delta\phi$ is only well-defined when $|\alpha| = \sqrt{n} \gg 1$.

Mark Fox, Quantum Optics

Vacuum Field I (Fox 7.4)

- Zero-point energy of QHO is $(1/2)\hbar\omega$
- Quantum optics: this energy from randomly fluctuating field called vacuum field (present everywhere)
- Equating zero-point energy of QHO to time-averaged energy of E and B fields gives, $E_{\rm vac} = \sqrt{\frac{\hbar\omega}{2\epsilon_0 V}}$
- Uncertainties in the two quadratures equal the minimum allowed, minimum uncertainty state $\Delta X_1^{\text{vac}} = \Delta X_2^{\text{vac}} = \frac{1}{2}$

Fig. 7.4 Phasor diagram for the vacuum state. The uncertainties in the two field quadratures are identical, with $\Delta X_1 = \Delta X_2 = 1/2$. Note that this figure is essentially the same as Fig. 7.3(a) except that the uncertainty circle is displaced to the origin to account for the zero classical field of the vacuum.

Mark Fox, Quantum Optics

Squeezed States (Fox 7.7)

- Can squeeze the uncertainty circle of vacuum or coherent state into ellipse of same area: quadrature-squeezed state
- Phase squeezed light allows interferometric measurements with greater precision
- Amplitude squeezed light allows lower amplitude noise
 - has sub-Poissonian statistics
- Could squeeze along any angle
- Could also make photon number state where $\Delta n = 0$ and phase is completely undefined!

Fig. 7.8 Quadrature squeezed state (a) Squeezed vacuum. (b) Phase squeezed light. (c) Amplitude-squeeze light. The dotted circle in each of th diagrams shows the quadrature uncertainty of the vacuum/coherent state

How to calculate quantum noise in any interferometer

- Calculate optical input-output relations for all ports of the interferometer (dark port, bright port)
- Send in normal vacuum state at every port:

in each quadrature

• Propagate to the output.

Dhruva Ganapathy Vicky Xu

Dhruva Ganapathy Vicky Xu

Frequency Dependent Squeezing in O4

Dhruva Ganapathy Vicky Xu

Frequency Dependent Squeezing in O4

Where do we go from here?

"Recently, we have waded a little out to sea, enough to dampen our toes or, at most, wet our ankles. The water seems inviting. The ocean calls."

Carl Sagan

Cosmic Explorer

The US Vision for Gravitational-Wave Astrophysics

• Next-Generation Gravitational-Wave

Observatory

- 40 km and 20 km L-shaped surface observatories
- 10x sensitivity of today's observatories
- Global network together with European Einstein Telescope
- Enables access to
 - Stellar to intermediate mass mergers throughout Cosmic Time
 - Dynamics of Dense Matter
 - Extreme Gravity

https://cosmicexplorer.org

90 Artist: Eddie Anaya (Cal <u>State Fullerton)</u>

Stefan Ballmer

90

Credit: Alex Nitz

Cosmology with Cosmic Explorer

- Expected event rate
 - O(1e5) BHBH merger annually
 - O(1e6) NSNS mergers annually
- Across redshifts up to O(30)
 - Sky localization from detector network
- The full Cosmic Explorer data set is a treasure trove for structure formation studies

Dynamics of dense matter

How does matter behave under the most extreme conditions in the universe?

- Neutron star structure, composition
- New phases of dense matter
- Chemical evolution of the universe
- Gamma-ray bursts and jets

Slide: P Landry, Figure: P Landry, J Read

Detecting Baryon Acoustic Oscillations

Combined posterior field 1year 3G detector network

CMB - WMAP

Sumit Kumar

https://iopscience.iop.org/article/10.3847/1538-4357/ac5e34 100

Cosmic Explorer Updates

- Horizon Study for more information available at:
 - o <u>https://arxiv.org/abs/2109.09882</u>
 - <u>https://cosmicexplorer.org</u>
- CE is as envisioned an NSF-funded Project
 - Initial design funding for 3 years at ~ USD 9M...
 - Institutions involved (alphabetically): Caltech, CSU Fullerton, MIT (lead), Syracuse University, University of Arizona, University of California Riverside, University of Florida, University of Minnesota, University of Oregon

Design and Hardware for Cosmic Explorer

Overview of CE Design and Research Activities

- Funded NSF awards:
 - "Launching the Cosmic Explorer Conceptual Design"
 - "Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer"
 - "Cosmic Explorer Optical Design"
 - "Enabling Megawatt Optical Power in Cosmic Explorer"
 - "Local Gravity Disturbances and Next-Generation Gravitational-Wave Astrophysics."
 - "Cosmic Explorer: Research and Conceptual Designs for Scattered-Light Mitigation."
- Other related funded awards partly supporting Cosmic Explorer:
 - Observational Science (consortium driven)
 - Vacuum system research
 - Center for Coatings Research
 - Suspension design (A#)

CE Retreat, Minnowbrook, NY, Oct 15-19, 2023

- Workshop to kick off design work for Cosmic Explorer
 - Site search for Cosmic Explorer
 - Optical and Thermal design
 - Project management and international collaborations

Identifying and Evaluating Sites for Cosmic Explorer

- Identification and evaluation of the most promising locations for CE observatories while developing protocols
- Many considerations:
 - Site Topography
 - Seismicity
 - Land ownership and Indigenous People Partnership
 - Long-term suitability and Economic Impact
- Initial candidate site selection in progress

0.2 Hz energy compared to basin locations

Sedimentary Basin Seismic Response Joshua Russell, Syracuse University

Cosmic Explorer Optical Design

Advanced LIGO Squeezer, Credit: Georgia Mansell/LIGO Hanford Observatory

Talk on final day May 24, 2013

Advanced LIGO noise budget

Scaled to longer arm length

Large Test masses

320 kg ultra-pure glass:

Reduce thermodynamic fluctuations and heat-induced deformation

Research into fabrication techniques & metrology

Metal-oxide thin-film coatings: Turn test mass into a mirror with reflectivity >99.995%

Configuration changes compared to Advanced LIGO

- Longer arm cavities $(4km \rightarrow 40km)$
- Larger test masses (m=40kg, ø=34cm →m=320kg, ø=70cm)
- 2nd input mode cleaner for frequency stabilization (arXiv:2107.14349)
- Scaled filter cavity (compared to A+)
- Homodyne readout (same as A+)
- Larger vacuum system (cost-critical)

Cosmic Explorer: Why Not Just Scale up LIGO Design?

- Unique challenges arise from a 10x longer arm length (CE-G2300033)
 - Minimum beam size for 40 km arms is ~12 cm. For < 1 ppm clipping loss on ITMs, require ~70 cm ITMs. Beamsplitter should be √2 bigger* (at 45° AOI). 1 m diameter unfeasible?
 - Consider alternate layouts with a different beamsplitter location
- Signal Extraction Cavity (SEC) resonance approaches detection band with 40 km or 20 km arms
 - \Rightarrow SEC length must be < 200 m (40 km arms) or < 90 m (20 km arms)
- FSR of 40 km arms is 3.75 kHz. With same arm finesse, DARM pole is 10x lower
 Need 10x higher SEC finesse to recover same bandwidth

Cosmic Explorer: Why Not Just Scale up LIGO Design?

- With a 10x lower arm cavity FSR, nearly all higher-order mode (HOM) resonances will lie in the observation band
- ➡ Precision mode-matching is critical to suppress noise couplings, squeezing loss, and squeezing angle mis-rotation around the frequencies of these resonances

"Leading" CE Interferometer Topologies (Preliminary)

- ~1° beamsplitter AOI
- Static lens polished onto ITM AR surface

- 45° beamsplitter AOI
- Lower-risk option, *if* beamsplitter thermal lensing is manageable

Cosmic Explorer Technology Challenges

- Large Optics
- Coatings (Thermal noise, Absorption)
- Squeezing (application)
- Suspensions and seismic isolation syste
- Vacuum system

Next-Generation Gravitational Wave Observatory Subcommittee (NextGenGW SC)

- Established by the NSF
- Committee home page with membership: <u>https://www.nsf.gov/mps/phy/nggw.jsp</u>
- Charge:
 - "... Based on this survey, a recommended list of GW detection network configurations that will deliver a detector with sensitivity an order of magnitude greater than the LIGO A+ design...."
 - https://www.nsf.gov/mps/advisory/subcommittee_charges/mpsac-nggw-charge_signed.pdf
- Call for White Papers:
 - Addressing"... science motivation and key science objectives, technical description of the proposed concept(s) and how different aspects are associated with key science, current and new technologies needed, risks, timelines, and approximate cost assessment, any synergies or dependencies on other multi-messenger facilities. ..."
 - <u>https://www.nsf.gov/mps/phy/nggw/WhitePaperCall2.pdf</u>
- Cosmic Explorer White Paper submitted: https://arxiv.org/abs/2306.13745
- Report is now published

Report available on home page: <u>https://www.nsf.gov/mps/phy/nggw.jsp</u>

ngGW Subcommittee Recommendations

- aLIGO facilities to be phased out by the time the CE wide-band sensitivity (of one or two detectors) is better than that of the aLIGO detectors.
- The availability of the LIGO-India detector in the network is important for MMA and, in fact, critically important in the absence of ET. The absence of LIGO-India cannot be balanced by keeping the aLIGO detectors operational.

ngGW Subcommittee Report to MPSAC, March 2024

ngGW Subcommittee Recommendations

Recommended list of GW detection network configurations that will deliver sensitivity an order of magnitude greater than the aLIGO A⁺ design.

- CE40, ET, LIGO-India (Network #1)
- CE40, ET (Network #2)
- CE40, CE20, LIGO-India (Network #3)
- CE40, CE20 (Network #4)

ngGW Subcommittee Report to MPSAC, March 2024

Take-away points

- GW astronomy is here, and we are staring to understand the actual source population.
- Advanced LIGO design works extraordinary well
 - Limiting: Quantum noise
 - Coating Thermal noise
 - Power handing due to point absorbers
- US effort for designing the next-generation observatories is underway. Based on proven technology, but some R&D is needed.
 - Quantum sensing (optical squeezing, ...)
 - Large optics and coatings
 - Vacuum technology
 - •

