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Abstract

Neutrinos propagate in a vacuum in mass states (a mix of their flavor 
states).  When electron neutrinos propagate through dense matter with 
electrons (such as the sun) their effective mass changes. This is 
important because it significantly reduces the amount of electron 
neutrino flux that we receive from the sun on earth.   Neutrinos 
interact with electrons via the weak current from the W boson which 
increases the effective electron neutrino mass.  Most of the 
propagation where the mass eigenstates are distinct can be understood 
using the Adiabatic Theorem. The electron density point where the 
mass eigenstates are nearly degenerate has to be handled separately.   
The goal of this project is to investigate mathematical methods to 
improve the accuracy and efficiency of computing the propagation of 
neutrinos in varying density matter like the sun or supernovae.

Discussion

Methods

Future Work

In situations where adiabatic propagation is valid, the initially 
generated electron neutrino can be transformed into the local L/H 
basis and the occupation of these states will be constant all the way 
to vacuum.   
● We can then transform back to the electron/muon neutrino basis.   
● The resulting probability of detecting an electron neutrino is 

then averaged over one oscillation cycle, yielding approximately 
⅓ in the Sun.   

● Most electron neutrinos are converted to muon neutrinos.  

Fig. 3 shows the complexity caused by working in the wrong basis.  
● A numerical differential equation solver has to reproduce rapid 

oscillations between electron and neutrino flavors 
● Fig 4. Shows a boring constant graph in the L/H  basis.   

○ This is much easier for a differential equation solver.

In other environments the adiabatic constraints are violated.   
● In a region around the critical density where the eigenstates are 

nearly degenerate, the second term in the L/H basis Hamiltonian 
couples the two states.  A tricky aspect is knowing how wide the 
region is.   

●  Fig. 5 shows the hopping occurring before the critical density is 
reached.   

● With a reliable answer for the width, adiabatic propagation can 
be efficiently used outside the region and a differential equation 
solver inside the non-adiabatic region.  

●  The shape of the density curve can change the results, 
motivating the use of the actual density profile instead of an 
approximation.

Modern neutrino evolution codes for supernovae work in time steps 
with each time step using a fixed snapshot of the local basis.   
● This local basis is only updated when it becomes too different 

from the instantaneous basis.   
● We would suggest that working in a continuously changing basis  

is much more efficient.

I would like to extend the local eigenstate formulation to 3 neutrinos and 
try to understand how to use it with the additional neutrino-neutrino 
interactions that become important in supernovae.
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Rapid oscillation indicates 
the use of the wrong basis. 

The average electron 
probability (blue band) is 
about ⅓ on exit from the sun.

Components in a local 
eigenbasis do not oscillate. 
In the adiabatic case the 
occupation of the light and 
heavy states are fixed, but 
their definition evolves with 
density  – Very Efficient!
A basis change back to (e/μ)
yields the same ⅓ e-neutrino 
average.

Landau Zener hopping occurs when the eigenstates of H become 
nearly degenerate and θ(t) is changing rapidly so the second term 
of the L/H differential equation becomes relatively large.  The 
second term is off-diagonal, connecting the two states.    While 
this process does not occur in the sun, it does happen in 
supernovae with higher energy neutrinos suppressing the first 
term.

As the critical density 
is approached, 
hopping from the 
heavy to the light 
state occurs.  This 
hopping reduces the 
conversion from 
electron neutrinos to 
muon neutrinos.

Background Results

Sections below show the differences of working in different eigenstate bases. 
● Figure 1 is working in the electron-muon basis while Figure 2 is working 

in the instantaneous eigenstate basis 
● Below that section shows what happens when Landau-Zener hopping 

occurs, a phenomena which was discussed previously in the methods 
section using Eq. 6

In order to determine the number of neutrinos that propagate from the 
core of our sun to the edge, we need to evolve the Hamiltonian over time
1. Calculated the electron density with respect to the radius from the 

core of the sun using Bachall’s table (Bachall). 
2. Solved for the critical radius where the electrons become degenerate 

● Found where the mass eigenstates of the neutrino were closest to 
each other using Eq. 3, the Hamiltonian

● This happens when X(t)=0 (Eq. 2), so then we were able to solve for 
density

● Can use electron density function to find critical radius that 
corresponds to critical density

Rather than calculating the Hamiltonian for the electron-muon basis, we 
want to calculate it in the instantaneous basis 
1. Using Eq. 4 (the Hamiltonian) we can diagonalize it to give the energy 

states which we would use as our basis for the instantaneous 
Hamiltonian 

2. To work in the instantaneous eigenstate basis, we need to rotate the 
electron-muon basis which would give us Eq. 6. 
● Rotate the electron-muon basis to the light/heavy basis by 

multiplying it by the first matrix in Eq. 4 
● The second term in brackets of Eq. 6 tells us when adiabatic 

propagation is valid
➢ If this term is smaller, then adiabatic propagation occurs
➢ If the term is larger, then Landau-Zener hopping from the 

heavy state to the light state occurs
● θ(t) describes the rotation to the light-heavy basis, and θ’(t) tells us 

how fast it changes.

Neutrino propagation in a vacuum can be characterized by two parameters: 
a mixing angle  θ12 which relates the flavor basis (e/μ) to the mass eigenstate 
basis, and a difference of the squared masses δm12

2. 
When neutrinos propagate through matter, all flavors interact with the 
background electrons through a neutral weak current carried by the Z 
boson. This affects the masses of all the flavors (e/μ/τ) in the same way and 
can be ignored.  Electron neutrinos however, interact in a special way 
because this interaction is via the W boson which carries an electric charge 
and shifts only the effective electron neutrino mass . 

The two-flavor (e/μ) propagation of neutrinos through matter can be 
described by the equation below.  E is the energy of the neutrino being 
modeled.  The term  2E√2GF ⍴e(x) represents the electron neutrino gaining an 
effective higher mass as a function of the density ⍴e(x).   The common 
neutral coupling via the Z has the same contribution for all flavors and can 
be ignored.

The adiabatic theorem describes the 
evolution of a system for a 
perturbation that slowly acts on 
the system. As the eigenstates evolve,
their occupation remains fixed.
Relating this to the sun, 
the Hamiltonian changes slowly 
from the core to a critical density 
which is where the adiabatic 
theorem is no longer valid 
because the electrons become 
degenerate. Figure 1
shows where the adiabatic theorem 
is valid (the shaded region) whereas 
unshaded represent where the 
adiabatic theorem is valid (Haxton) 
and the marked region are the current
values for sin2(2𝜃12) and  δm12

2 /E with
neutrino energy E=10 MeV.

Neutrinos propagating in the 
Sun and supernovae see a higher 
density of electrons.  The graph
on the right is of the number 
density in cm-3 in the sun as a 
function of x=r/Rsun. 

Number 
density 
of 
electrons
(cm-3)

r/Rsun

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

(Haxton, 1987)

Fig. 2

Eq. 3


