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Detection of Neutron Star Oscillation

The gravitational waves produced by neutron star mergers provide us

with crucial information about the properties of these celestial objects.

The chirp mass and tidal deformability have been analyzed using data

from LIGO and Virgo observations of GW170817. The third generation

of gravitational wave detectors may be able to detect direct signals of

oscillating neutron stars in[1]:
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Classification of Neutron Star Oscillations

Radial oscillation (l=0): don’t couple to gravitational waves:

εr = Rr
n(r)eiωt, ε θ, φ = 0

Further classify to f-mode (fundamental n=0), p-modes (pressure

n=1,2,…)[2, 3].

Non-radial oscillation (l>=2):

εr, θ, φ = ∂r, θ, φ

(
R

r, θ, φ
n (r)Y l

m(θ, φ)eiωt
)

Further classify to f-mode, p-modes, g-modes (gravity n=1,2,…).

ν(kHz) τ (s)
f-mode 1.3-2.8 0.1-1

p-mode >2.7 1-1000

g-mode <0.8 >100

Table 1. Frequency and damping time

Frequency, damping time and oscillation profile of these oscillations are

sensitive to the equation of state (EOS) of a neutron star which is crucial

in relating the properties of heavy nuclei, dense uniform nuclear matter

and neutron stars.

Method: Linearized Full General Relativity

Even parity perturbation of the Regge-Wheeler metric,

ds2 = −eν(r)(1 + r`H0(r)eiωtY`m(φ, θ))c2dt2 + eλ(r)(1 − r`H0(r)eiωtY`m(φ, θ))dr2

+(1 − r`K(r)eiωtY`m(φ, θ))r2dΩ2 − 2iωr`+1H1(r)eiωtY`m(φ, θ)dtdr

where H0, H1, and K are metric perturbation functions. ω is the complex
oscillation frequency.

Fluid perturbations with even parity are described by the Lagrangian dis-

placement vectors

ξr = r`−1e−λ/2WY `
meiωt

ξθ = −r`−2V ∂θY `
meiωt

ξφ = − r`−2

sin2 θ
V ∂φY `

meiωt,

which define the fluid perturbation amplitudes W and V . Einsteins’ equa-
tion reduce to linearized equation of motion (EOM), defining the eigenvalue

problem of standing waves.

g-mode

1. g-mode due to density discontinuity

Discontinuity g-mode is similar to surface wave in the ocean. Its frequency

is sensitive to phase transition properties in the core of NS such as density

discontinuity and the location of the discontinuity[1],

Ω2
g ≈ β3(Mt/M)(R/Rt)3(∆ε/εt)D tanh[D]

1 + ∆ε/εt + tanh[D]/ tanh[D(R/Rt − 1)]
, (1)

Figure 1. Perturbation profiles of a typical

discontinuity g-mode.

Figure 2. g-mode frequency

varying phase transition

properties[1].

2. g-mode due to composition gradient

Equilibrium equation of state is p(nB(r), Yi(r)), where both pressure p,
baryon number density nB and chemical composition Yi is a function of

position inside neutron star. Therefore, adiabatic index of compression can

be defined,

Γad = ∂ ln p

∂ ln nB
(2)

Γeq = d ln p

d ln nB
= Γad + ∂ ln p

∂ ln Yi
(d ln Yi

dr
)(d ln nB

dr
)−1 (3)

The difference between two adiabatic index ∆(c−2) = (1/Γeq − 1/Γad)ε+p
p ,

leads to the local gravity oscillation with frequency known as the Brunt-

Väisälä frequency,

ν2
g = g2eν−λ∆(c−2), (4)

where ν and λ are the temporal and radial metric functions, and g =
(dp/dr)(ε + p)−1 is the local gravity.

The global g-mode frequency is sensitive to the chemical composition,

e.g. lepton fraction Ylep,
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Figure 3. Frequency of compositional g-mode vs sum of lepton and quark fractions[4].

f-mode and p-modes

f-mode and p-modes are pressure supported oscillation modes. The fluid

perturbations, W and V increases with radius. The mode frequencies

increase with stellar compactness.

f-mode is the

dominant mode

from Core-collapse

SNe and NS merger

simulations, since it

have lowest

number of radial

nodes (usually zero).

While p-modes

have more radial

nodes, n = 1, 2, ...
and higher

frequency.

Therefore, p-modes

are harder to excite

and observe.
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Figure 4. Perturbation profiles of typical f-mode and

p1-mode[5].

f- and p-modes are sensitive to pressure at saturation density and twice

saturation density respectively.

Figure 5. Correlation coefficient between frequency(damping time) nuclear properties[5].
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