

- Dark decays $n \to X_1 X_2$... make up 1.3% of the total width
- Subject to kinematic constraints:
 - Kinematically allowed if $\sum_{i} m_{X_i} < m_n$
 - ⁹Be satable: $\sum_{i} m_{X_{i}} > 937.90$ MeV
- Model I: dark neutrons carrying unit baryon number B=1
 - [Fornal and Grinstein, PRL 120, (2018) 191801] - Either visible $n \rightarrow \chi \gamma$, or invisible $n \rightarrow \chi \phi$, ...
 - χ stable thus DM candidate if $m_{\chi} > m_p + m_e \approx 938.87$ MeV
 - LANL searched for γ , ruled out χ as DM candidate, or $n \rightarrow \chi \gamma$ as a complete resolution if χ is stable [Z Tang et al PRL 2018, 121]
- Model II: dark quarks $n \rightarrow \chi_i \chi_j \chi_k \dots$
 - [*D Zhou*, *Universe* 9 (2023) 11, 484] They are fermions each carrying baryon number 1/3 —
 - Can be identical or distinct with $N_{\rm f}$ species —

Neutron Star Constraints on Neutron Dark Decays

University of California, Berkeley and Northwestern University

Neutron stars (NSs) and dark neutrons

NSs yield model-independent bounds on dark neutrons

- Non-interacting χ 's dominate NS, their Fermi gas equation of state (EOS) only support $\sim 0.8 M_{\odot}$ stars

Constraint

mirror neutron

excluded $C_{s,\max}\gtrsim 0.6$ $g/m_V \gtrsim 0.01 \ {
m MeV^{-1}}$

Existence of 2 M_{\odot} neutron stars requires strong interactions among χ 's

Valid for $n\chi$ mixings much smaller than probed at terrestrial labs

Dark quarks I: degenerate masses: $m_{\gamma} \approx m_n/3$

• Up to 6 non-interacting species ($N_f \le 6$) may be allowed

The sound speed squared of Fermi gas approaches 1/3 faster for lower masses:

$$C_s = \frac{1}{3} \left[1 + \frac{m^2}{(3\pi^2 n)^{2/3}} \right]^{-1}$$

sufficient to support massive pulsars even in the absence of strong self-repulsions.

Dark guarks II: light dark guarks and dark halos

- Dark quarks with $m_{\chi} < m_n/3$ form halos surrounding NSs
 - Nonzero pressure at the surface pushes dark quarks outward
- In equilibrium sourced by local baryon chemical potentials μ_B ; Due to gravity a gradient is established as:

Light dark quarks and dark halos

- χ 's inside the star reduce maximum NS mass; χ 's in the halo raise minimum NS mass
 - It is energetically favorable to store baryon numbers in the lightest dark quarks, the ground state in vacuum
 - Without strong gravitational fields, low-mass stars may have trouble curb the growth of halos which would eventually become gravitationally unbounded
 - The minimum NS mass thus puts a lower bound on m_{χ}

Dark quark halos could also enhance tidal interaction during binary neutron star inspirals

Conclusions

- Neutron dark decays can populate neutron stars with sizable amounts of dark matter, affecting static properties and leaving observable imprints
- Neutron stars are sensitive to dark decay partial widths much less than can be probe in labs; Studying their evolution and observables could lead to additional bounds on slow processes.

References

[1] D McKeen, A Nelson, S Reddy, **D Zhou,** PRL 121 (2018) 6, 061802 [2] **D Zhou**, *Universe* 9 (2023) 11, 484

Acknowledgement

This research is supported by NSF Physics Frontier Center Award 2020275.