$B(\mu^{-} + (A, Z) \to e^{-} + (A, Z)) \equiv \frac{\Gamma(\mu^{-} + (A, Z) \to e^{-} + (A, Z))}{\Gamma(\mu^{-} + (A, Z) \to \nu_{\mu} + (A, Z - 1))}$

could improve by **4 orders of magnitude** at next-generation experiments Mu2e at Fermilab and COMET at J-PARC

- Elastic $\mu \rightarrow e$ conversion:
 - Nucleus remains in ground state

charged lepton flavor violation (CLFV)

- Maximizes energy of outgoing electron
- Parity P and time-reversal T symmetries of nuclear ground state restrict operators that can contribute
- Nuclear physics makes interpretation of results difficult

How can we extract the **most information** about underlying **CLFV operators** from measurements of elastic $\mu \rightarrow e$ conversion in nuclei?

Why a Nucleon-level Effective Theory?

The process of $\mu \rightarrow e$ conversion spans a wide range of energies, from the nuclear scale where experiments are performed up to the highenergy realm ($\Lambda_{CLFV} \gtrsim 1$ TeV) of candidate UV CLFV theories. One may formulate an effective theory description of the process in each of these energy ranges. The nuclear-scale effective theory is the most natural:

- **Interfaces** directly with **experiments**
- Factorizes CLFV physics from nuclear physics
- Many-body calculations require nucleon degrees of freedom

Above: Sketch of the energy scales that are relevant in $\mu \rightarrow e$ conversion and the corresponding theoretical descriptions that are applicable in each energy range.

τ^{-}	$v_{ au}$
μ^{-}	$ u_{\mu}$
e ⁻	ν_e

Introduction

• Neutrino flavor oscillations imply lepton flavor is not conserved

• Limits on the CLFV $\mu \rightarrow e$ conversion branching ratio

Beyond Standard Model (BSM) physics can produce observable

Nuclear Effective Theory of $\mu \rightarrow e$ Conversion Evan Rule

Department of Physics, University of California, Berkeley, CA, USA

(blue dashed). Nuclear charge density (with arbitrary normalization) is shown in gray. Bottom right: The Schrodinger (blue dashed) and Dirac (orange) muon wavefunctions for the target ²⁷Al are compared. The dashed black line shows the constant approximation. The lower component is shown in green. Shaded regions correspond to nuclear monopole and quadrupole densities.

- **Coefficients** c_i of single-nucleon operators \mathcal{O}_i are approximately target-independent

Single Nucleon Level: 16 Operators		
$\mathcal{O}_1 = 1_L 1_N$ $\mathcal{O}_{11} = i\hat{q} \cdot \vec{\sigma}_L 1_N$	Building blocks: 1_L , 1_N , $i\hat{q}$, \vec{v}_N , $\vec{\sigma}_L$, $\vec{\sigma}_N$	$ \begin{array}{l} \mathcal{O}_{7} = 1_{L} \; \vec{v}_{N} \cdot \vec{\sigma}_{N} \\ \mathcal{O}_{14} = i \hat{q} \cdot \vec{\sigma}_{L} \; \vec{v}_{N} \cdot \vec{\sigma}_{N} \end{array} $
$\begin{aligned} \mathcal{O}_4 &= \vec{\sigma}_L \cdot \vec{\sigma}_N \\ \mathcal{O}_6 &= i\hat{q} \cdot \vec{\sigma}_L i\hat{q} \cdot \vec{\sigma}_N \\ \mathcal{O}_9 &= \vec{\sigma}_L \cdot (i\hat{q} \times \vec{\sigma}_N) \\ \mathcal{O}_{10} &= 1_L i\hat{q} \cdot \vec{\sigma}_N \end{aligned}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{aligned} {}_{3} &= 1_{L} i \hat{q} \cdot (\vec{v}_{N} \times \vec{\sigma}_{N}) \\ {}_{12} &= \vec{\sigma}_{L} \cdot (\vec{v}_{N} \times \vec{\sigma}_{N}) \\ {}_{13} &= \vec{\sigma}_{L} \cdot [i \hat{q} \times (\vec{v}_{N} \times \vec{\sigma}_{N})] \\ {}_{15} &= i \hat{q} \cdot \vec{\sigma}_{L} i \hat{q} \cdot (\vec{v}_{N} \times \vec{\sigma}_{N}) \end{aligned}$

Above: The nucleon-level effective theory is constructed from four Hermitian operators: the direction of the outgoing electron $i\hat{q}$, the nucleon velocity operator \vec{v}_N , and the lepton $\vec{\sigma}_L$ and nucleon $\vec{\sigma}_N$ spin operators.

Below: The nuclear embedding imposes P and T symmetries of the nuclear ground state, restricting the operators (and multipolarity **J**) that can contribute. Some operators are enhanced by coherence; others are reduced by selection rules.

Above: Nuclear response functions evaluated using shell-model wave functions in various $\mu \rightarrow e$ conversion targets. Superscript "00" ("11") denotes the pure isoscalar (isovector) response.

Conclusions

A program of $\mu \rightarrow e$ conversion measurements can place up to **16 constraints on CLFV operators** by varying the **nuclear response functions** *W* through target selection.

Using state-of-the-art **shell-model** calculations, we explored the sensitivity to the underlying CLFV operators of 11 potential targets including ²⁷AI, the **chosen target** of the next-generation experiments Mu2e and COMET. The **effective theory** that we have developed provides a clear factorization between the nuclear physics and the CLFV physics, sequestering the latter quantity into **unknown coefficients** (the $c'_i s$) that are directly probed by experiment. Finally, we have distilled the nuclear effective theory into publicly-available Mathematica and Python scripts.

Acknowledgments

This work was supported in part by the National Science Foundation under cooperative agreement 2020275. Research was done in collaboration with Wick Haxton, Ken McElvain, and Michael Ramsey-Musolf.

Contact: erule@berkeley.edu

References

[1] E. Rule, W. C. Haxton, and K. McElvain, arXiv:2109.13503, accepted at Phys. Rev. Lett. [2] W. C. Haxton, E. Rule, K. McElvain, and M. J. Ramsey-Musolf, arXiv:2208.07945, accepted at Phys. Rev. C