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FRIB Offers Broad Opportunities for Nuclear Astrophysics Measurements

Fast Beams:
Indirect astrophysical reaction measurements (>~30 MeV/u)
Charge exchange reactions probe weak interactions

- - Mass measurements

Stopped Beams:

- Nuclear decays, masses

1
50 meters
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FRIB Offers Broad Opportunities for Nuclear Astrophysics Measurements
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ReA3 reaccelerated beams:
- Direct measurements of astrophysical
reaction rates <~3 MeV/u)
Indirect measurements at low energy ‘ FRIB
oo .d . ReA6 beams:
SRl Indirect
Reacceleration 1 ] measurements

Gaopping to low astrophysical energies Sl ~3-6 MeV/u

Fast Beams:

- Indirect astrophysical reaction measurements (>~30 MeV/u)
- Charge exchange reactions probe weak interactions

- - Mass measurements

Stopped Beams:

- Nuclear decays, masses

1
50 meters

FRIB first experiment Spring 2022
2 Calls for proposal so far LT
10 kW (5 kW for Pb, U beams)
Ultimate goal: 400 kW
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FRIB

* Nuclear physics experiments on shell structure are +os«
the reason we know there is an r-process g/cm’ o ity |
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* Does shell structure persist into r-process path?
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- Understanding the origin of the elements means understanding nuclear structure far
from stability and how it links to the composition of the cosmos
— This needs to be mapped out experimentally



‘@  Experiments are Needed to Interpret Kilonova Observations (evax,

FRIB
GW170817 Trigger Line features Light curves depend on nuclear physics
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Levan et. al.
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Sr feature: Watson et al. 2019
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Red Key question:
- Atomic opacity What elements and isotopes are made in neutron star mergers?
- Nuclear composition —> Need nuclear physics to “fit” astrophysical parameters to observations
- With astrophysical conditions constrained, need nuclear physics to
“Interpolate” sparse observations and obtain the complete
abundance pattern

ESO/N.R. Tanvir, A.J. Levan
and the VIN-ROUGE collaboration




R-Process Experiments are Needed to Interpret r-Process
Signatures in Metal poor stars

Multi-event patterns Strongly enhanced r-process stars
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* Need nuclear physics to fit models to observations to
constrain astrophysical parameters

* May also have to disentangle multiple components
(NS mergers, MHD supernovae, Collapsars — e.g.
Yamazaki et al. 2023)

* Once that fits, need nuclear physics to determine

isotopic abundance contributions

Nuclear physics needed to predict contribution
patterns from each process
- can then disentangle individual components




Much of r-Process Nuclear Physics Within Reach at FRIB 4,

FRIB

. .. ~10-8 ici
Decay branchings for n-emission Masses ~10* precision

B-decay Half-lives, levels g el e e L e :7
== i < \ / l' .
..4\ !.

FRIB Decay Station

Led by UT/ORNL

Super3Hen - -
(Huffman, Rasco,gycazewski, )

TOF stop —
/u_r__vr:-.ﬁg‘\ S800

P ,&‘i "
/

Bp meas.

)

o merthod AAE HBGRE : TOF (Estrade, ..)

FRIB40O0 r-process
information gain | Key Region: Gateway to heavier nuclei

Key for kilonovae

—>Need to ramp up to 400 kW
- Need FRIB400 to reach heavy r-process region




Accreting Neutron Stars

- A more gentle probe compared neutron star mergers

- 100s in the Galaxy and extremely bright and easy to observe
e - '_ '_'.__.:a"




Quasi Persistent Transients Probe Neutron Star Physics €.

FRIB
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Time Since MJD=56450

Crust cooling
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., Unknown heat source

Both observables are
powgred by rare isotope T
phVSICS =L Brown & Cumming 2009

Superfluid
neutrons?

Redshift
variation

Zamfir et al. 2012

- NS compactness, EOS
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SECAR Recoil Separator Enables Direct
p-Capture Rate Measurements at FRIB

G. Berg, M. Couder, Notre Dame | :é | ':' 2

| vk L B et Recoils
(Design based on St. George) ::_;"‘ R
F. Montes, H. Schatz, MSU i B I, R

J. Blackmon, LSU
K. Chipps, M. Smith, ORNL
U. Greife, CSM

1.6 MeV BGOs gated on BGI - Si time peak
™ 2
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Recoil Detection

‘ ! : First recoil detection from
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ENERGY Science w T -> Scientific commissioning ongoing




(a,p) Reaction Rate Measurements with JENSA and ORRUBA  ¢GEvan
Using Low Energy Reaccelerated Radioactive Beams at NSCL

Open questions concerning these types of rates (Long et al. 2017)
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»® acCtio eating (and Cooling

RIE D o A BTIC ofs 2C
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Time: 1.400e+08 s Calculate crust composition as a function of depth:
Temp_: 0.50 GK . EC/P- strength: QRPA (S. Gupta, P. Moeller, W. Hitt) + Exp W.-J. Ong
Density: 1.45e+09 g/cm”3 . Masses: AME2012, FRDM (P. Moeller)
Yn: 0.00e+00 *  n-capture rates: TALYS (S. Goriely, Y. Xu)
EF_e: 4.01 MeV with corrections from P. Shternin
EF_n: 0.00 MeV *  Pycnonuclear fusion rates: M. Beard, A. Afanasjey,
Max Flow1.00e+00 % L. Gasques, M. Wiescher, D. Yakovlev

. Code: H. Schatz, H.R. Hix, R. Lau, M. Beard, S. Gupta
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Urca Cooling from A=61 Nuclei Weaker than Expected CUL!

FRIB

—— Experiment

Bl s Thooes Ong et al. 2020
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See talk by R. Jain
DO8: Wednesday 9:45 Reach FRIB for mass measurements
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FRIB400 can reach all nuclei
involved in heating or cooling
of accreted neutron star crusts
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{eNAM

FRIB

e Supernova Neutrino Sighals Depend on Rare Isotope Physics

Neutrino signal depends on rare isotope electron EC on neutron rich nuclei is important
capture rates: (similar nuclei than what is needed for neutron star crusts)
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- Also impacts explodability, remnant properties,
- Need experimental data on weak interactions on neutron rich nuclei beyond b-decay

- Charge exchange reactions at FRIB with the AT-TPC open up that opportunity




Summary

* Nuclear physics is essential to understand origin of the elements and neutron stars

* Fundamental nuclear physics questions about rare isotopes and their reactions are linked to
astronomical observables

* FRIB offers an opportunity to address many of these questions
* If you want to know more: Workshop on Origin of the Heavy Elements tomorrow 9 — 15:30

* Extraordinary opportunity for nuclear astrophysics with start of FRIB coinciding with
major advances in multi-messenger astronomy and 3D computational modeling

* Also essential:
» Stable beam experiments (above and below ground)
* Nuclear theory for what cannot be measured experimentally

* Theorist, Computational modelers, Experimentalists, and Observers need to work
together — centers and networks are critical

* JINA and now Center for Nuclear Astrophysics Across Messengers (CeNAM)
* International Research Network for Nuclear Astrophysics (IReNA) irenweb.org
* N3AS, NP3M, NUCLE], ....



