The impacts of nuclear-physics uncertainties on heavy-element nucleosynthesis

Nobuya Nishimura RIKEN (CPR/RNC)

26 Nov. 2023, N3AS-RIKEN WS

Cosmic nucleosynthesis beyond Iron

- regular nuclear burnings in stars synthesize elements up to Fe
- ·trans-Fe, classically 3 classes: s-process, r-process, "p-process"
- each group originates individual nucleosynthesis process
 - (s/r process, p process (+rp/ ν p process) + subclasses)

Astrophysical r-process sites

core-collapse SNe

Massive stars

(10>M_{sun})

SN explosion

proto-NS

ν -driven wind

- NO direct r-process observation
- Theoretically difficult
 - not very neutron-rich

Merger

NS binaries

NS

NS

NS

The "observational" evidence with gravitational waves (GW170817)

"Observation" of r-process nucleosynthesis

GW from NS-NS merger Abbot+(2017)

"kilonova"

NASA and ESA

identification of Sr

and La?? (Domoto+2022)

NS mergers and r-process senario

Talk plan

1. <u>νp-process in "regular" core-collapse SNe</u>

- Nucleosynthesis in p-rich ejecta: possible solution of "Mo problem"
- •Key reactions for the Mo isotope ratio of lighter p-isotopes

2. <u>r-process in "peculiar" core-collapse SNe</u>

- Background: magneto-rotational cc-SNe
- possibilities of the r-process and observational signature

3. <u>r-process in NS mergers</u> (see also S. Tanaka's Poster)

- •Nuclear fission in the NS-merger r-process
- A new method: dynamical fission + post-fission evolution
- impacts of n-emission for n-rich isotopes

1. vp-process in Core-collapse supernovae

•Rauscher, NN+(2016), MNRAS 463 4153 ·NN+(2018), MNRAS 474 3133 ·NN+(2019), MNRAS 489 1379

Proton-rich matter in cc-SNe

around the SN core: neutron-rich? \rightarrow NO, due to neutrino heating (strong magnetic explosion?, if you want to see the r-process \rightarrow next topic)

$\nu_e + n \rightarrow p + e^- \& \bar{\nu}_e + p \rightarrow n + e^+$

9M

6000 km 400 km explosion by ν heating 11M

420 km

4200 km

Y_e tail reaches proton-rich? can exceed $Y_{\rm e} = 0.6$

<u> ν p-process: p-capture accelerated by the ν -reaction</u>

ν heating and explosion

Nucleosynthesis simulations ν p-process ("initial" Y_e ~ 0.6)

NN+2019×1D wind model with parameters suggested by SN simulations <u>Can the ν p-process happen in realistic cc-SNe?</u> \rightarrow surely happen, but how far it reaches (heavy nuclei) remains unsolved \rightarrow a major source of p-rich nuclei in cc-SNe

<u>"Molybdenum (Mo) problem" (lighter p-nuclei)</u>

N, neutron number

for the entire p-nuclei)

Sasaki+(2022)

 ν p-process in GCE (see, Travaglio+2018)

Key reactions in heavy-element nucleosynthesis reaction "flows" in several nucleosynthesis

Our approach with Rauscher (U Basel), Hirshi (Keele U)

reaction/decay uncertainty

Monte-Carlo statistical analysis

observation

•<u>s-process</u>

•weak s: massive stars (NN+2017)

- \rightarrow n_TOF experiments
- ·main s: low mass stars (Cescutti, Hirsch, NN+2018)
- <u>p-process</u> \rightarrow TRIUMF experiments
- core-collapse supernovae (Rauscher, NN+2016)
- •Type la supernovae (NN+2018)

 νp -process (NN+2019) \rightarrow RIBF experiments

Uncertainty by individual reaction types

Solar isotopic ratios

the solar isotopic ratio (Lodders 2003): /94Mo $^{92}Mo/^{94}Mo = 1.6$, $^{84}Sr/^{94}Mo = 0.54$, $^{78}Kr/^{94}Mo = 0.82$

- ν p-process w/ updated masses? \rightarrow still low ⁹²Mo/⁹⁴Mo (Xing+2018)
- nuclear reactions?
 - $\rightarrow 0.67 < {}^{92}Mo/{}^{94}Mo < 2.79$ for a specific model (NN+2019)

NN+2019

2. r-process in magneto-rotational SNe

·Hasegawa, Tanaka, NN+, in prep.

<u>Astrophysical r-process sites</u>

roto-NŞ·

 ν -driven wind

core-collapse SNe Massive stars (10>M_{sun})

Magneto-rotational driven explosion

ess observation icult n-rich

Merger

NS binaries

NS

NS

NS

The "observational" evidence with gravitational waves (GW170817)

<u>Magneto-rotational SN scenario</u>

hypernova/jet-like SN

magnetars

- variety of r-process patterns in metal-poor stars
- \cdot can be rare $\sim 1\%$ of ccSN rate
- Galactic chemical evolution
 - needed as external sources with NS mergers?
 - MR-SNe, "hypernovae", collapsars etc.?? (see, e.g., Wehmeyer+2015, Tsujimoto&NN 2015, Cescutti+2017, Siegel+2019, Kobayashi+2020 etc.)

Magnetars

• strong magnetic field $\sim 10^{15}$ G $(\sim 1 \% \text{ of all neutron stars})$

- <u>Magneto-driven Supernovae?</u>
 - GRB central engine
 - •Hypernovae?
 - (magnetar driven) Super luminous SNe?

Cowan+2021

<u>r-Process studies with SN models</u>

 magneto-rotational driven cc-SN mechanism (non-standard explosions) •neutrino-heating is not predominant (but, still significant)

- \cdot strong magnetic jet may eject very neutron-rich matter (high e⁻ capture -> low Y_e)
 - advanced neutrino transport Reichert+2023 Reichert+2021, 2022 (w/ Obergaulinger+2020) 300 o km -200 Fe-peak 10- 350C-Rs — 350C-RRw 10-7 - 350C-RO 350C-Rw ALC: NO 10 100 150 50 100 150 200

Mass number

0

Mass number

<u>r-Process studies with SN models</u>

. . . .

Entropy

Obergaulinger & Reichert 2023

- Multiple physics in explosion models
 - •multi-D MHD, general relativity
 - neutron transport, weak reactions
 - ·computational domain, time-scale
 - nucleosynthesis

Magnetic Field Lines

 dependence on rotation and B-fields •B-fields application by winding

<u>r-Process studies with SN models</u> NN+2017

Obergaulinger & Reichert 2023

THE ASTROPHYSICAL JOURNAL LETTERS, 836:L21 (6pp), 2017 February 20 © 2017. The American Astronomical Society. All rights reserved.

- <u>High resolution MHD</u> (local B-field amplification)
- ·MRI
- •magnetic turbulence

 $\bullet \quad \bullet \quad \bullet \quad \bullet$

N. Nishimura (西村信哉)^{1,6}, H. Sawai (澤井秀朋)^{2,3}, T. Takiwaki (滝脇知也)⁴, S. Yamada (山田章一)³, and F.-K. Thielemann⁵

https://doi.org/10.3847/2041-8213/aa5dee

ir-process?? The Intermediate r-process in Core-collapse Supernovae Driven by the Magneto-rotational Instability

<u>Modeling light-curves with r-process-jet-SN</u>

- ·1D radiative hydrodynamics (Tanaka & Hotokezaka 2013)
- ·LTE, b-b transition for all elements
 - •⁵⁶Ni production with explosion model —> model parameter
 - ·r-process is uniformly mixed in ejecta (free parameter)

later phase \sim days — yrs

GRB (hypernova) associated SNe

Hasegawa+NN+ 2022 light curves

Identification in SN observations?

- ·NN+2017 suggests r-process-rich + ⁵⁶Ni poor ejecta
 ·may occur if kinetic-driven (less heat-driven) jet expansion?
 ·We expect a significant r-process-decay heating (relative to ⁵⁶Ni)
 .⁵⁶Ni heating ∝ exp(-t/τ): M(⁵⁶Ni)1.1 × 10⁻⁴M_☉
 - •r-process heating $\propto t^{-1.3}$: $M(r \text{ proc})1.1 \times 10^{-2} M_{\odot}$

3. r-process in neutron-star mergers

- only introducing our recent fission studies
- ·Tanaka, NN+(2023), Phys. Rev. C 108 054607 •See also the poster by Shoya Tanaka !

Neutron star

the NS merger and "kilonova"

credit NAOJ

3. approach w/ **GW** emission

radio active decays of r-process elements

Nuclear fission in r-process nucleosynthesis

r-process \rightarrow fission : termination, heating source of "kilonovae" fission \rightarrow r-process : unique natural source, beyond accelerator experiments

> traditional NS merger calculations \rightarrow too strong r-process this problem was solved in modern simulations e.g., Wanajo+NN+(2014) strong fission recycle

NS merger (kilonova)

<u>Theoretical fission yield distribution of n-rich nuclei</u>

fission distribution by Langevin calculations

KUDAF database (in prep.)

- (Kindai University DynAmical Fission yields)
- NN and Tanaka (RIKEN), Aritomo (Kindai U)

Fission distribution

calculated by I.Nishimura, Takagi, Miyasakai

KiLM code : 3D two-center shell model

Two-center parametrization: $q\{z, \delta, \alpha\}$

(Maruhn & Greiner 1972)

- z : center of mass distance
- δ : deformation
- α : mass asymmetry

A hybrid method: dynamical + statical models

toward complete fission yields for r-process theoretical data \leftrightarrow astrophysical nucleosynthesis

- fission process has several experimental data \rightarrow comparison Tanaka, NN+2023

Nuclear fission of neutron-rich nuclei

GEF (red) vs. KiLM (dynamical model) (black)

\rightarrow affects r-process

future experiments (KISS II by KEK & RIKEN) toward neutron-rich U

				174	25	144		140		140		100	e Selected	102	7 144	104		100	<u>,</u>	100		100		102				
	051	(0.)	-0.1	142	-0,2	144	-0.3	146	-0.6	148	-1.0	-1.3	-1.8	-1.8	-	154	_	156		158		160		162		10 ⁻²	3.1	
	83	(Bi)	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	1.0	240								24	5
	84 ((Po)	225	225	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244				10-1	1.000	
	85 ((At)	225	227	228	229 27	230	231	232	233	234	235	236	237 0.9	238 0.4	239 0.2	240	241 -0.5	242	243	244	245	246			1	-	- 既知核の境界
	86 ((Rn)	227 3.6	228 3.7	229 3.6	230 3.6	231 3.4	232 3.4	233 3.0	234 2.0	235 2.5	236	237 1.9	238 1.6	239 1.1	240 0.8	241 0.3	242 0.1	243 -0.5	244	245 -1.5	246	247	248				
	87 ((Fr)	228 4.4	229 4.6	230	231 4.5	232 4.3	233 4.3	234 3.9	235 3.8	236 3.4	23 7 3.2	238 2.8	239 2.4	240 1.8	241 1.6	242 1.0	243 0.7	244 0.2	245 -0.2	245 -0.8	247 -1.2	248 -2.0	249	11	10	-	── 崩壊核分光
	88 ((Ra)	229 5.3	230 5.5	231 5.3	232	233 5.2	234 5.1	235	236 4 8	237 4.2	238 3.8	239 3.4	240	241	242 21	243 1.5	244 1.2	245 0.5	246 0.2	247 -0.5	248 -0.9	249 -1.6	250 -2.0		10 ²		劳可测定
7	89 ((Ac)	230 6.0	231 6.2	232 6.1	233 62	234 6.0	235 5.9	236 53	237 54	238 5.0	239 4.7	240 4.2	241 3.8	242 3.2	243 2.8	244	245 1.9	245 1.2	247 0.8	248 0.1	249 -0.4	250	251 -1.5		10°		末会測向
番	90 ((Th)	231 6.7	232 6.8	233 6.8	234	235 6.8	236 6.7	237 6.3	238 6.1	239 5.5	240 5.3	241 4.7	242	243 3.7	244	245 25	245	247 1.5	248	249 0.3	250 -0.2	251 -1.0	252 -1.5			-	- 質量測定
孚	91 ((Pa)	7.1	233	234 7.5	235	236	287	7.2	239 6.8	240 8.3	241 5.8	242 5.3	243 4.9	4.2	245 3.7	245 3.1	247	248	1.3	0.7	0.1	-0.6	-1.3		10 ⁴	本研	究課題で目指す測定範囲
面	92 ((U)	233 7.5	284	235 3.0	235 33	237	²³⁸ U	238 8.3	240 7.4	241 5.5	242 5,2	243 5.3	244 5.0	245 4.2	246 9.7	247 3.1	248 2.6	249 1.9	250 1.3	251 0.6	252 0.0	253 -0.8	254 -1.4		10 ⁵	Ŧ	/ Symmetric
	93 ((Np)	234	235 7.4	236	237 7.8	238	239	240	241 8.8	242 8,2	243 5.8	244 5.1	245 4.5	246 3.9	247 3.4	248 2.7	249 2.2	260 1.5	251 0.9	252 0.3	253 -0.4	254	255 -1.9		10°	肾	\rightarrow cymmotric
	94 ((Pu)	235 6.6	235 6.9	237 6.8	238	239 6.9	240 6.6	241 6.4	242 6.1	243 5.5	244 5.1	245	245	247 3.3	248 28	249 2.1	250 1.6	251 0.8	252 0.3	253 -0.6	254 -1.2	255 -2.1	256			Ó	
	95 ((Am)	235 6.1	237 6.2	238 6.2	239 6,3	240 6.2	241 6.1	242 5.7	243 5.4	244 4.9	245 4.5	246 3.9	247 3,3	248 2.6	249 2.2	250 1.4	251 0.9	252 0.1	253 -0.5	254 -1.3	255 -1.9	256	257		10 ⁷	たり	asymmetric
	96 ((Cm)	237 5.4	238 5.5	239 5.5	240 5.6	241 5.4	242 5.3	243 4.3	244 4.5	245	246 3.6	247 3.0	248 2.5	249 1.7	250 1.1	251 0.3	252 -0.2	253 -1.0	254 -1.5	255 -2.4	256	257	258		10 ⁸	出	acummotric
	97 ((Bk)	238 4.6	239 4.7	240	241 4.7	242 4.6	243 4.5	244 4 1	245 38	246 3.3	247	248 2.2	249 1.7	250 0.9	251 0.4	252 -0.5	253 -1.0	254 -1.8	255	255					10°		j i i i i i i i i i i
			s										_											10		•	1927	by Watanabe (KEK)

Tanaka, NN+(2023)

1. <u>vp-process in core-collapse supernovae</u>

- ·improving reaction rates may reproduce the solar ⁹²Mo/⁹⁴Mo
- ·key reactions of νp -process for determining $^{92}Mo/^{94}Mo$: first priority: ⁹²Mo(p,g)⁹³Tc (second ⁹³Tc(p,g)⁹⁴Ru)

2. <u>r-process in magneto-rotational SNe</u>

- •possible alternative site, but still hypothetical
- •We found a parameter region where the r-process can be
- identified in future optical observations

3. <u>r-process in neutron-star mergers</u>

- ²³⁶U : we reproduces experiments
- ·applying n-rich U: the difference of asymmetric to symmetric fission has impacts on the number of emitted neutrons <n>

Summary