Multi-Messenger Astronomy at Hyper-Kamiokande

Mark Vagins Kavli IPMU, UTokyo

Workshop on Multi-messsenger Astrophysics @ Fall Meeting of APS DNP and JPS Hilton Waikoloa Village November 26, 2023

A core-collapse supernova is a nearly perfect "neutrino bomb".

Within ten seconds of collapse it releases >98% of its huge energy (equal to 10¹² hydrogen bombs exploding per second since the beginning of the universe!) as neutrinos.

Neutrinos, and possibly gravitational waves, provide the only windows into core collapses' inner dynamics.

A long time ago, in a (neighbor) galaxy far, far away...

A long time ago, in a (neighbor) galaxy far, far away...

Water Cherenkov detectors' principle of operation:

Relativistic charged particles make rings of light on the inner wall of the detector. The rings are then imaged by photomultiplier tubes.

Actual supernova neutrino events!

← time

Based on the handful of supernova neutrinos which were detected that day, approximately <u>one</u> <u>theory paper has been published every ten days</u>...

...for the last thirty-six years!

In 2002, Masatoshi Koshiba would win the Nobel Prize in physics for observing the neutrinos from SN1987A with Kamiokande.

Kamiokande = Kamioka Nucleon Decay Experiment

Both IMB and Kamiokande had been built to discover proton decay based on SU(5) predictions.

Super/Hyper-Kamiokande = Super/Hyper Kamioka Neutrino Detection Experiment

We're still looking for proton decay, but now neutrinos – atmospheric, solar, and supernova – are the undisputed stars of the show!

When collecting neutrinos, size definitely does matter!

3 kilotons \rightarrow 50 kilotons \rightarrow 258 kilotons (1 kt fiducial) \rightarrow (22.5 kt fiducial) \rightarrow (178 kt fiducial)

HYPER-K COLLABORATION

UMBER OF COLLABORATORS

-Total -Japan -Oversea

2

Broadening of the international collaboration

~600 collaborators (incl. 25% of Japanese), 22 countries, and 102 institutes. Funding secured in several countries.

March 2023, 1st in-person Collaboration Meeting @ Toyama

Hyper-K Detector Location

- 8 km south of Super-K
- 295 km from J-PARC and 2.5 deg. off-axis beam (same as Super-K)
- 600 m rock overburden

Schematic view of Hyper-Kamiokande detector Enlarged view Access Tunnel Upper part of the detector 1 1 . 1 A ANALIA ANALANA 1 . (Photo Sensor) (Mylar Sheet) Plug Manhole Lower part of the detector 1 **Cross section** I Concret Shotcrete 1 Outer Detecto (Photo Sensor (Tyvek Sheet) Access Tunnel **Photo-sensors** 1 FWL 1 . 1 1 Water 1 Plug Manhole Outer Detecto (Photo Sensor (Tyvek Sheet) Inner Det (Photo Se (Mylar S **Cavity**(Lining Outer W

Construction history

Dome section 2023 (3rd yr) ~ 1 Super-K

Access tunnel 2021 (1st yr)

Approach tunnel 2022 (2nd yr)

Approved as a project in April 2020, Hyper-Kamiokande rock excavation is proceeding on schedule. All access tunnels have been dug, as well as the 69-meter-wide by 21-meter-tall dome, and the cavernous (1st) water system room.

Approved as a project in April 2020, Hyper-Kamiokande rock excavation is proceeding on schedule. All access tunnels have been dug, as well as the 69-meter-wide by 21-meter-tall dome, and the cavernous (1st) water system room.

PMT production for Hyper-K is also underway Screening of ~20,000 50-cm tubes is being conducted both at Hamamatsu and Kamioka

Construction plan

Dome section 2023 (3rd yr)

Access tunnel 2021 (1st yr)

Approach tunnel 2022 (2nd yr) 2024 (4th yr) ~5 Super-K

Construction plan Photosensor installation 2026 (6th yr)

Stainless lining 2025 (5th yr)

Water Filling & DAQ start 2027

Astrophysics: Supernova v in Hyper-K

Main detection channels

v+e

visible energy (MeV)

10 ²

~70k events/burst

- explosion mechanism,
- BH/NS formation,
- alert with 1° pointing

Supernova Neutrino Detection

Heart of the multi-messenger astronomy with HK: 8.4 times larger effective mass than SK

Supernova Model Discrimination

- To understand explosion mechanism, need to compare observation with simulations.
- 5 representative models are compared by using energy & time of events detected 20-520ms after core bounce.
 - Full detector simulation
 - Unbinned likelihood
- Model discrimination is surely possible at LMC (50kpc).

Model	Normal Mass Ordering		
	N10 kpc	d_{100}	<i>d</i> ₃₀₀
Totani	20021	141 kpc	82 kpc
Nakazato	17978	134 kpc	77 kpc
Couch	27539	166 kpc	96 kpc
Vartanyan	10372	102 kpc	59 kpc
Tamborra	25025	158 kpc	91 kpc

HK Collab., ApJ 916:15, 2021

Expected number of DSNB events in HK

~4 events/yr in HK w/ H tag

- Stellar collapse
- Star formation rate
- Heavy element synthesis

Conditions

SK-Gd (22.5 kton H₂O + Gd)

Low energy threshold : 10 MeV neutron tagging by Gd-loading Started data-taking in 2020 Aim for the first discovery

JUNO (20 kton LS)

Low energy threshold : 12 MeV

Start data-taking in 2024

Hyper-K (187 kton H₂O)

Energy threshold : 16 MeV?

Start data-taking in 2027

Aim for the precise flux and energy spectrum measurement

Adding gadolinium to HK is being preserved as a future upgrade option \rightarrow >10 DSNB events/yr

Main 200-ton Water Tank (224 50-cm PMT's + 16 HK test tubes)

EGADS Laboratory in Kamioka

15-ton Gadolinium Pre-treatment Mixing Tank

Selective Water+Gd Filtration System

Worldwide, over ¥十五億 (<u>\$10M</u>) has been spent developing and proving the viability of the Beacom+Vagins Gd-in-water concept.

With an R&D program of mostly long-duration tests, EGADS also functions as a dedicated, Gd-loaded SN detector. <u>Its realtime</u> alerts are open to the public. ~90,000 v events @ Betelgeuse

> $\sim 40 v \text{ events}$ @ G.C.

EGADS is now the lowest latency SN neutrino detector in the world. We'll send out an announcement within <u>a few seconds</u> of a MW SN neutrino burst's arrival!

https://www-sk.icrr.u-tokyo.ac.jp/~egofl/

Sorry, but there was no Milky Way supernova while I was preparing my talk last night!

So, thank you for having me here today.

In Hawaii – unlike in Japan – my usual choice of clothing actually looks normal.

Let's keep watching the skies together and so put all the SN messengers to work!

