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Asteroseismology
• how to know the best time to eat a watermelon?

• inside can not be checked before cutting
• “empirical rule”

• to check the best time, knock on a watermelon
• high frequency “KIN-KIN”; too young
• “BAN-BAN”; best time!
• low frequency “BON-BON”; too old 

• may need many years to get this ability
• one could see the interior with specific sounds from objects.

• asteroseismology
• linear perturbation analysis is considered in this talk.
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NS oscillation modes
• axial parity

• spacetime (w-) modes
• torsional (t-) modes
• rotational (r-) modes
• magnetic modes

• polar parity
• fundamental (f-) modes
• pressure (p-) modes
• gravity (g-) modes
• spacetime (w-) modes
• shear (s-) modes
• interface (i-) modes
• inertial (i-) modes
• magnetic modes
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Neutron stars as GW sources (II)

Fluid part (oscillations) Non-axisymmetric mass 
quadrupole (“mountains”)  

Continuous emission                    

under the angular transformation 
(𝜃→𝜋-𝜃, 𝜙→𝜋+𝜙), 

a spherical harmonic function 
with index ℓ transforms as 

   (-1)ℓ+1 : axial parity / (-1)ℓ : polar parity
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Universal (empirical) relations
• To extract the physical properties from observables, 
a universal relation (independently of the EOS) must be important
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Although some of these EOS might be outdated, none of them is
ruled out by present observations. Furthermore, the range of
stiffness of the EOS listed by Arnett & Bowers is still relevant
today. This is important for the present study. In order for our
analysis to be robust it is necessary that our sample of EOS spans the
anticipated range of stiffness. However, we have also included three
more modern EOS: one of the models of Wiringa, Ficks &
Fabrocini (1988) and two models from Glendenning (1985). For
the EOS that were also considered by Lindblom & Detweiler (1983)
we have chosen identical stellar models to facilitate a comparison of
the results. Finally, we have only included stellar models the masses
and radii of which are within the limits accepted by current
observations (Finn 1994; van Kerkwijk, van Paradijs & Zuiderwijk
1995).

2 W H AT C A N W E L E A R N F RO M
O B S E RVAT I O N S ?

Our present understanding of neutron stars comes mainly from
X-ray and radio-timing observations. These observations provide
some insight into the structure of these objects and the properties of
supranuclear matter. The most commonly and accurately observed
parameter is the rotation period, and we know that radio pulsars can
spin very fast (the shortest observed period being the 1.56 ms of
PSR 1937+21). Another basic observable, that can be obtained (in a
few cases) with some accuracy from present day observations, is the
mass of the neutron star. As Finn (1994) has shown, the
observations of radio pulsars indicate that 1:01 < M=M( < 1:64.

Similarly, van Kerkwijk et al. (1995) find that data for X-ray pulsars
indicate 1:04 < M=M( < 1:88. The data used in these two studies is
actually consistent with (if one includes error bars) M < 1:44 M(.
We now recall that the various EOS that have been proposed by
theoretical physicists can be divided into two major categories: (i)
the ‘soft’ EOS, which typically lead to neutron star models with
maximum masses around 1:4 M( and radii usually smaller than 10
km, and (ii) the ‘stiff’ EOS with the maximum values M , 1:8 M(

and R , 15 km (Arnett & Bowers 1977). From this one can deduce
that, even though the constraint put on the neutron star mass by
present-day observations seems strong, it does not rule out many of
the proposed EOS. In order to arrive at a more useful result we
are likely to need detailed observations of the stellar radius
also. Unfortunately, available data provide little information
about the radius. The recent observations of quasiperiodic oscilla-
tions in low-mass X-ray binaries indicate that R < 6M, but again
this is not a severe constraint. Although a number of attempts have
been made, using either X-ray observations (Lewin, van Paradijs &
Taam 1993) or the limiting spin period of neutron stars (Friedman,
Ipser & Parker 1986), to put constraints on the mass–radius
relation, we do not yet have a method which can provide the desired
answer.

2.1 A detection scenario

In view of this situation, any method that can be used to infer
neutron star parameters is a welcome addition. Of specific interest
may be the new possibilities offered once gravitational wave
observations become reality. An obvious question is the extent to
which one can solve the inverse problem in gravitational wave
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Figure 1. The numerically obtained f mode frequencies plotted as functions
of the mean stellar density (M and R are in km and qf mode in kHz).

Figure 2. The normalized damping time of the f modes as functions of the
stellar compactness (M and R are in km and tf mode in s).
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with a, b, and c being complex constants determined from
curve fitting. Such universality originates from the fact that
the mass distribution inside physical neutron stars can be
approximated by the Tolman VII model (TVIIM) [18],
whose mass distribution function m!r" # 4!
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QNMs of TVIIM manifestly depend only on the compact-
ness of the star and reproduce the scaling behavior men-
tioned above [16]. As shown in Fig. 2, TVIIM provides a
good approximation to stars with varying EOS and the
universality in (1) can be captured by the best quadratic
fit to the QNMs of TVIIM, with a $ %4:4% 6:3i, b $
3:1& 1:9i, and c $ %0:072& 0:098i [16].

As the first step of the inversion scheme, we study the
frequency of the leading (i.e., the least-damped) axial w
mode of TVIIM, !!c"

1 $ !!c"
1r % i!!c"

1i , and find that the
ratio !!c"

1r =!
!c"
1i is, in fact, a monotonically increasing func-

tion of M=R [16]. Hence, once !!c"
1 for TVIIM is known,

M=R can be obtained from the ratio !!c"
1r =!

!c"
1i and in turn

M and R can be found from Eq. (1) or Fig. 2.
As TVIIM, indeed, provides a benchmark for other

realistic stars, we expect that the frequency of the least-
damped axial w mode emitted from a realistic neuron star,

!1 $ !1r % i!1i, is close to that of the TVIIM star with
the same mass and the same radius. Therefore, we could go
through the procedure outlined above with !!c"

1 replaced by
!1 to obtain estimates of M, R, m!r", and hence "!r" for
the star in consideration.

To gauge the accuracy of this scheme, we show in
Fig. 3(a) "!r" of an APR1 star with C $ 0:28. The result
obtained from the above step (empty circles) agrees nicely
with the exact numerical data (the solid line). The pressure
distribution P!r" then follows directly from the Tolman-
Oppenheimer-Volkoff (TOV) equations [18,19] and in turn
the EOS P!"" can be found. In Fig. 3(b) we show the result
of such a scheme (empty circles), which satisfactorily
reproduces the EOS (solid line) except at high densities.
In addition, as TVIIM is exactly solvable [18], the EOS can
be found analytically:
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with "0 # "!r $ 0" $ 15C=!8!R2",
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FIG. 3 (color online). (a),(b) "!r" and P!"", respectively, for
an APR1 star with C $ 0:28. The solid line is the theoretical
value, while the unfilled, gray, and dark circles represent the
results obtained from the inversion scheme using one, two, and
three leading axial w modes. The result obtained from the
inversion scheme using !1 and the frequency of a wII mode is
shown by the crosses.
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FIG. 2 (color online). The real and imaginary parts of M! for
the least-damped axial w mode of six realistic stars (unfilled
symbols) and TVIIM (stars) are shown as a function of M=R in
(a) and (b), respectively. The dotted line represents the best
quadratic fit to those of TVIIM.
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where M1.4 ≡M=ð1.4 M⊙Þ and x ¼ log10ðΛÞ, and the
predicted values with these universal relations are shown
with thick-solid lines in the corresponding panels. The
bottom panels show the relative deviation calculated with

Δ ¼ jA −Afitj
A

; ð10Þ

where A denotes the values of ffM1.4 or M1.4=τf deter-
mined by solving the eigenvalue problem, while Afit
denotes their values predicted with the fitting formulas.
From this figure, one can observe that ffM1.4 and M1.4=τf
are estimated with less than 1% accuracy for the canonical
neutron star models, whose Λ is in the range of Λ≲ 103.
Considering the universal relations for ffM1.4 andM1.4=τf
as a function of M=R derived in Ref. [36], which respec-
tively predict a few % accuracy and ∼5% accuracy, the new
universal relations derived in this study seem to be more
useful. We remark that the reason why the accuracy of the
universal relation for low-mass neutron star, e.g., Λ≳ 106,
becomes so bad comes from the avoided crossing between
the f- and p1-modes, where the behavior of the frequencies
and damping rate changes [36]. For example, as shown in
Fig. 8 in Ref. [36], the f-mode frequency bends at the point
where the avoided crossing between the f- and p1-modes
occurs, while stellar mass does not dramatically change

around this point. In addition, we note that we check the
other possibility for the universal relation as a function of
Λ, e.g., ffR10, ff=uc, R10=τf, and 1=ðucτfÞ, where R10 and
uc are defined by R10 ≡ R=ð10 kmÞ and uc ≡ ρc=ρ0 with
the central density ρc and the nuclear saturation density ρ0.
But, we find that the universal relation given by Eqs. (7)
and (8) are more accurate than these other possible
combinations.
Next, in Fig. 4 we show the p1-mode frequencies, fp1

,
multiplied with the normalized neutron star mass is shown
as a function of Λ in the top panel. Again, one can see that
these quantities are almost independent of the adopted
EOSs and universally expressed as a function of Λ, such as

fp1M1.4ðkHzÞ ¼ 10gp1 ðxÞ; ð11Þ

gp1
ðxÞ ¼ 1.0853 − 0.15527xþ 0.062266x2 − 0.023666x3

þ 0.0022713x4 − 7.3071 × 10−5x5; ð12Þ

with which the expected values are also shown with a thick-
solid line. In the bottom panel, we show the relative
deviation of the calculated frequencies from the fitting
formula in the similar way to the case of the f-modes. With
this universal relation, one can predict fp1

M1.4 within
∼10% accuracy for canonical neutron star, which is more
or less similar accuracy with the universal relation as a
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FIG. 3. The f-mode frequency multiplied with M1.4 (top-left panel) and its damping rate multiplied with M1.4 (top-right panel) are
shown as a function of Λ for various EOSs, where the fitting formulas given by Eqs. (7)–(9) are also shown with the thick-solid lines. In
the bottom panels, the relative deviation between the calculated values and the values predicted with the fitting formulas are shown.

HAJIME SOTANI and BHARAT KUMAR PHYS. REV. D 104, 123002 (2021)

123002-4

where M1.4 ≡M=ð1.4 M⊙Þ and x ¼ log10ðΛÞ, and the
predicted values with these universal relations are shown
with thick-solid lines in the corresponding panels. The
bottom panels show the relative deviation calculated with

Δ ¼ jA −Afitj
A

; ð10Þ

where A denotes the values of ffM1.4 or M1.4=τf deter-
mined by solving the eigenvalue problem, while Afit
denotes their values predicted with the fitting formulas.
From this figure, one can observe that ffM1.4 and M1.4=τf
are estimated with less than 1% accuracy for the canonical
neutron star models, whose Λ is in the range of Λ≲ 103.
Considering the universal relations for ffM1.4 andM1.4=τf
as a function of M=R derived in Ref. [36], which respec-
tively predict a few % accuracy and ∼5% accuracy, the new
universal relations derived in this study seem to be more
useful. We remark that the reason why the accuracy of the
universal relation for low-mass neutron star, e.g., Λ≳ 106,
becomes so bad comes from the avoided crossing between
the f- and p1-modes, where the behavior of the frequencies
and damping rate changes [36]. For example, as shown in
Fig. 8 in Ref. [36], the f-mode frequency bends at the point
where the avoided crossing between the f- and p1-modes
occurs, while stellar mass does not dramatically change

around this point. In addition, we note that we check the
other possibility for the universal relation as a function of
Λ, e.g., ffR10, ff=uc, R10=τf, and 1=ðucτfÞ, where R10 and
uc are defined by R10 ≡ R=ð10 kmÞ and uc ≡ ρc=ρ0 with
the central density ρc and the nuclear saturation density ρ0.
But, we find that the universal relation given by Eqs. (7)
and (8) are more accurate than these other possible
combinations.
Next, in Fig. 4 we show the p1-mode frequencies, fp1

,
multiplied with the normalized neutron star mass is shown
as a function of Λ in the top panel. Again, one can see that
these quantities are almost independent of the adopted
EOSs and universally expressed as a function of Λ, such as

fp1M1.4ðkHzÞ ¼ 10gp1 ðxÞ; ð11Þ

gp1
ðxÞ ¼ 1.0853 − 0.15527xþ 0.062266x2 − 0.023666x3

þ 0.0022713x4 − 7.3071 × 10−5x5; ð12Þ

with which the expected values are also shown with a thick-
solid line. In the bottom panel, we show the relative
deviation of the calculated frequencies from the fitting
formula in the similar way to the case of the f-modes. With
this universal relation, one can predict fp1

M1.4 within
∼10% accuracy for canonical neutron star, which is more
or less similar accuracy with the universal relation as a

0

1

2

3

4

 f f
 M

1.4
 (k

Hz
)

DD2
Miyatsu
Shen

FPS
SKa
SLy4
SLy9
Togashi

100 101 102 103 104 105 106 107 10810

10

10

10

10

10

10

10

10

100

101

M
1.4

/ f
  (1

/se
c)

DD2
Miyatsu
Shen

FPS
SKa
SLy4
SLy9
Togashi

100 101 102 103 104 105 106 107 10810

10

10

10

10

1

FIG. 3. The f-mode frequency multiplied with M1.4 (top-left panel) and its damping rate multiplied with M1.4 (top-right panel) are
shown as a function of Λ for various EOSs, where the fitting formulas given by Eqs. (7)–(9) are also shown with the thick-solid lines. In
the bottom panels, the relative deviation between the calculated values and the values predicted with the fitting formulas are shown.

HAJIME SOTANI and BHARAT KUMAR PHYS. REV. D 104, 123002 (2021)

123002-4

where M1.4 ≡M=ð1.4 M⊙Þ and x ¼ log10ðΛÞ, and the
predicted values with these universal relations are shown
with thick-solid lines in the corresponding panels. The
bottom panels show the relative deviation calculated with

Δ ¼ jA −Afitj
A

; ð10Þ

where A denotes the values of ffM1.4 or M1.4=τf deter-
mined by solving the eigenvalue problem, while Afit
denotes their values predicted with the fitting formulas.
From this figure, one can observe that ffM1.4 and M1.4=τf
are estimated with less than 1% accuracy for the canonical
neutron star models, whose Λ is in the range of Λ≲ 103.
Considering the universal relations for ffM1.4 andM1.4=τf
as a function of M=R derived in Ref. [36], which respec-
tively predict a few % accuracy and ∼5% accuracy, the new
universal relations derived in this study seem to be more
useful. We remark that the reason why the accuracy of the
universal relation for low-mass neutron star, e.g., Λ≳ 106,
becomes so bad comes from the avoided crossing between
the f- and p1-modes, where the behavior of the frequencies
and damping rate changes [36]. For example, as shown in
Fig. 8 in Ref. [36], the f-mode frequency bends at the point
where the avoided crossing between the f- and p1-modes
occurs, while stellar mass does not dramatically change

around this point. In addition, we note that we check the
other possibility for the universal relation as a function of
Λ, e.g., ffR10, ff=uc, R10=τf, and 1=ðucτfÞ, where R10 and
uc are defined by R10 ≡ R=ð10 kmÞ and uc ≡ ρc=ρ0 with
the central density ρc and the nuclear saturation density ρ0.
But, we find that the universal relation given by Eqs. (7)
and (8) are more accurate than these other possible
combinations.
Next, in Fig. 4 we show the p1-mode frequencies, fp1

,
multiplied with the normalized neutron star mass is shown
as a function of Λ in the top panel. Again, one can see that
these quantities are almost independent of the adopted
EOSs and universally expressed as a function of Λ, such as

fp1M1.4ðkHzÞ ¼ 10gp1 ðxÞ; ð11Þ

gp1
ðxÞ ¼ 1.0853 − 0.15527xþ 0.062266x2 − 0.023666x3

þ 0.0022713x4 − 7.3071 × 10−5x5; ð12Þ

with which the expected values are also shown with a thick-
solid line. In the bottom panel, we show the relative
deviation of the calculated frequencies from the fitting
formula in the similar way to the case of the f-modes. With
this universal relation, one can predict fp1

M1.4 within
∼10% accuracy for canonical neutron star, which is more
or less similar accuracy with the universal relation as a

0

1

2

3

4

 f f
 M

1.4
 (k

Hz
)

DD2
Miyatsu
Shen

FPS
SKa
SLy4
SLy9
Togashi

100 101 102 103 104 105 106 107 10810

10

10

10

10

10

10

10

10

100

101

M
1.4

/ f
  (1

/se
c)

DD2
Miyatsu
Shen

FPS
SKa
SLy4
SLy9
Togashi

100 101 102 103 104 105 106 107 10810

10

10

10

10

1

FIG. 3. The f-mode frequency multiplied with M1.4 (top-left panel) and its damping rate multiplied with M1.4 (top-right panel) are
shown as a function of Λ for various EOSs, where the fitting formulas given by Eqs. (7)–(9) are also shown with the thick-solid lines. In
the bottom panels, the relative deviation between the calculated values and the values predicted with the fitting formulas are shown.

HAJIME SOTANI and BHARAT KUMAR PHYS. REV. D 104, 123002 (2021)

123002-4

HS & Kumar 21



Contents

• supernova gravitational waves
• magnetar QPOs and torsional oscillations
• resonant shattering and shear/interface modes
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Supernova gravitational waves
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Avoided crossing in GWs from PNS 7
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Figure 5. Comparison between the gravitational wave signals obtained from the numerical simulation (background contour) and several
eigenfrequencies for the PNS with ρs = 1011 g/cm3, where circles, diamonds, and squares denote the f -, pi-, and gi-modes for i = 1 or
2. The source distance is assumed to be D = 10 kpc.

S̃(f, Tpb) =
1
2

∫ Tpb+∆t

Tpb−∆t

d2I−zz

dt2

[
1 + cos

(
π(t− Tpb)

2∆t

)]
exp(−2πift)dt, (6)

where 2∆t denotes the width of the window function and I−zz is the zz-component of the reduced mass-quadrupole tensor I−jk

given by Eq. (11) in Murphy, Ott, & Burrows (2009). In Fig. 5, we show the resultant value of hchar with contour, adopting

that D = 10 kpc and ∆t = 20 ms. In this figure, one can clearly observe the ramp up signals from ∼ 500 hertz up to ∼ 1.5

kilohertz in the time interval of Tpb ≃ 0.15− 0.65 sec. On this figure, we also plot the several eigenfrequencies on PNS model

with ρs = 1011 g/cm3. From this figure, it is obviously found that the ramp up signals correspond well to the g1-mode in

the early phase and to the f -mode after the avoided crossing. But, since the g1-mode frequency depends on ρs in the early

phase as mentioned before, it is not sure whether or not the ramp up signal corresponds well to the g1-mode for different PNS

models provided with the different numerical simulations. In order to check this point, we calculate the gravitational wave

signals from the 2D numerical simulations with completely different progenitor models and EOSs as in Table 1 and compare

it with the eigenmodes calculated for the corresponding PNS with ρs = 1011 g/cm3. Then, we find that the ramp up signals

still seem to be good agreement with the g1-mode on the PNS model with 1011 g/cm3 as shown in Fig. A1 (see the details in

Appendix A).

Now, it is observationally important what one can learn from the direct observation of the gravitational wave signals after

supernova explosion, assuming that principal signals are the ramp up signals appearing in numerical simulations. That is,

since the ramp up signals partially correspond to the f - and g1-mode frequencies, it is very useful if one could connect these

frequencies to the PNS properties. In the left panel of Fig. 6, we show the f - and g1-mode frequencies for the PNS model with

ρs = 1011 g/cm3 as a function of the square root of the normalized PNS average density, (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2.

With this data, we successfully find that the f - and g1-mode frequencies, which correspond to the ramp up signals, are well

expressed as

f(kHz) = −3.250− 0.978 ln(x) + 15.984x− 15.051x2, (7)

where x is the square root of the normalized PNS average density, i.e., x = (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2. In practice,

the frequency predicted from Eq. (7) is also plotted with the thick-solid line in the left panel of Fig. 6. Thus, using Eq. (7), one

could get the evolution of the PNS average density via the observed frequency of gravitational wave after supernova explosion.

In this study, since we consider only one progenitor model and one EOS, it is difficult to say how this relation is independent

of the models. Even so, this relation seems to be independent of the models at least in the early phase, as shown in Fig. A2

in Appendix A. Anyway, additional models should be considered in the future.

The relation similar to Eq. (7) has already been proposed, as a function of x in Sotani & Sumiyoshi (2019);

f(kHz) = 0.9733− 2.7171x+ 13.7809x2, (8)

and as a function of x̄ ≡ MPNS/R
2
PNS in the unit of M⊙/km

2 in Torres-Forné et al. (2019b);

f(kHz) = 12.4× 102x̄− 378× 103x̄2 + 4.24× 107x̄3, (9)

although in Torres-Forné et al. (2019b) the ramp up signal is identified as g2-mode in their classification. Eq. (8) are derived

for the f -mode frequency after the avoided crossing with the g1-mode with the PNS models provided by the 1D numerical

simulations, which are eventually collapsed into black hole. In the left panel of Fig. 6, we also plot the thick-dotted line

c⃝ 0000 RAS, MNRAS 000, 000–000
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Dawn of GW astronomy
• GWs from the compact binary merger have been 
detected.
• GWs become a new tool for extracting astronomical
information.

• The next candidate must be a supernova explosion.

Nov. 26, 2023 7
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Next candidate of GW sources
• core-collapse supernovae

• compared to the binary merger, the system is almost spherically 
symmetric
• less energy of gravitational waves

• many numerical simulations show the existence of GW signals 
• SN GWs depend on the SN models, such as progenitor mass and EOS

• how to extract the astronomical information from the GW observations?
• what is the origin of the SN GWs?

2. NUMERICAL METHODS

In our full GR radiation-hydrodynamics simulations, we
solve the evolution equations of metric, hydrodynamics, and
neutrino radiation. Each of them is solved in an operator-
splitting manner, but the system evolves self-consistently as a
whole satisfying the Hamiltonian and momentum constraints
(Kuroda et al. 2012, 2014).

Regarding the metric evolution, we evolve the standard BSSN
variables g̃ij, f, Ãij, K, and G̃i (Shibata & Nakamura 1995;
Baumgarte & Shapiro 1999). The gauge is specified by the “1
+log” lapse and by the Gamma-driver-shift condition.

In the radiation-hydrodynamic part, the total stress-energy
tensor ( )

abT total is expressed as

( )( ) ( )
¯

( )å= +ab ab

n n n n
n
ab

Î

T T T , 1total fluid
, ,e e x

where ( )
abT fluid and ( )n

abT are the stress-energy tensor of fluid and
the neutrino radiation field, respectively. All radiation and
hydrodynamical variables are evolved in conservative ways.
We consider all three flavors of neutrinos ( ¯n n n, ,e e x) with nx
representing heavy-lepton neutrinos (i.e., n nm t, and their anti-
particles). To follow the 3D hydrodynamics up to 1400 ms
postbounce, we shall omit the energy dependence of the
radiation in this work (see, however, Kuroda et al. 2016).

We use three EoSs based on the relativistic-mean-field
theory with different nuclear interaction treatments, which are
DD2 and TM1 of Hempel & Schaffner-Bielich (2010) and
SFHx of Steiner et al. (2013). For SFHx, DD2, and TM14, the
maximum gravitational mass Mmax and the radius of cold NS R
in the vertical part of the mass–radius relationship are

=M 2.13max , 2.42, and 2.21 :M and ~R 12, 13, and, 14.5

km, respectively (Fischer et al. 2014). SFHx is thus softest
followed in order by DD2 and TM1. Among these three, while
DD2 is consistent with nuclear experiments, such as for its
symmetry energy (Lattimer & Lim 2013), SFHx is the best-fit
model with the observational mass–radius relationship. All
EoSs are compatible with NS mass measurement ∼2.04 :M
(Demorest et al. 2010). Our 3D-GR models are named DD2,
TM1, and SFHx, which simply reflects the EoS used.
We study a frequently used 15 Me star of Woosley &

Weaver (1995). The 3D computational domain is a cubic box
with 15,000 km width, and nested boxes with eight refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is D =x 458 m. In the
vicinity of the stalled shock front ~R 100 km, our resolution
achieves D ~x 1.9 km, i.e., the effective angular resolution
becomes ~ n1 .
Extraction of GWs from our simulations is done by the

conventional quadrupole formula in which the transverse and
the trace-free gravitational field hij is expressed by (Misner
et al. 1973)

( ) ( ) ( ) ( )q f
q f q f

=
++ + ´ ´h

A e A e
D

,
, ,

. 2ij

In Equation (2), ( )q f+ ´A , represents the amplitude of
orthogonally polarized wave components with emission angle
( )q f, dependence (Scheidegger et al. 2010; Kuroda
et al. 2014), + ´e denotes unit polarization tensors, and D is
the source distance where we set D=10 kpc in this Letter.

3. RESULTS

We start by describing the hydrodynamics at bounce. The
central rest mass density rc reaches r = 3.69,c 3.75 and 4.50
×1014 g cm−3 for TM1, DD2, and SFHx, which is higher, as
expected, for the softer EOS (e.g., Fischer et al. 2014).

Figure 1. In each set of panels, we plot (top) the gravitational-wave amplitude of plus mode +A [cm] and (bottom) the characteristic wave strain in the frequency-time
domain h̃ in a logarithmic scale that is overplotted by the expected peak frequency Fpeak (black line denoted by “A”). “B” indicates the low-frequency component. The
component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009; Müller et al. 2013). The component “B” is considered to be associated with the
SASI activities (see Section 3). Left and right panels are for TM1 and SFHx, respectively. We note that SFHx (left) and TM1 (right) are the softer and stiffer EoS
models, respectively.

4 The symmetry energy S at nuclear saturation density is S=28.67, 31.67,
and 36.95 MeV, respectively (e.g., Fischer et al. 2014).

2
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Comparison with GW signals
in numerical simulation
• GW signals correspond to g1-mode in early phase and f-mode 
after avoided crossing.
• similar correspondence has been seen even in various SN models 

Nov. 26, 2023
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Figure 5. Comparison between the gravitational wave signals obtained from the numerical simulation (background contour) and several
eigenfrequencies for the PNS with ρs = 1011 g/cm3, where circles, diamonds, and squares denote the f -, pi-, and gi-modes for i = 1 or
2. The source distance is assumed to be D = 10 kpc.

S̃(f, Tpb) =
1
2

∫ Tpb+∆t

Tpb−∆t

d2I−zz

dt2

[
1 + cos

(
π(t− Tpb)

2∆t

)]
exp(−2πift)dt, (6)

where 2∆t denotes the width of the window function and I−zz is the zz-component of the reduced mass-quadrupole tensor I−jk

given by Eq. (11) in Murphy, Ott, & Burrows (2009). In Fig. 5, we show the resultant value of hchar with contour, adopting

that D = 10 kpc and ∆t = 20 ms. In this figure, one can clearly observe the ramp up signals from ∼ 500 hertz up to ∼ 1.5

kilohertz in the time interval of Tpb ≃ 0.15− 0.65 sec. On this figure, we also plot the several eigenfrequencies on PNS model

with ρs = 1011 g/cm3. From this figure, it is obviously found that the ramp up signals correspond well to the g1-mode in

the early phase and to the f -mode after the avoided crossing. But, since the g1-mode frequency depends on ρs in the early

phase as mentioned before, it is not sure whether or not the ramp up signal corresponds well to the g1-mode for different PNS

models provided with the different numerical simulations. In order to check this point, we calculate the gravitational wave

signals from the 2D numerical simulations with completely different progenitor models and EOSs as in Table 1 and compare

it with the eigenmodes calculated for the corresponding PNS with ρs = 1011 g/cm3. Then, we find that the ramp up signals

still seem to be good agreement with the g1-mode on the PNS model with 1011 g/cm3 as shown in Fig. A1 (see the details in

Appendix A).

Now, it is observationally important what one can learn from the direct observation of the gravitational wave signals after

supernova explosion, assuming that principal signals are the ramp up signals appearing in numerical simulations. That is,

since the ramp up signals partially correspond to the f - and g1-mode frequencies, it is very useful if one could connect these

frequencies to the PNS properties. In the left panel of Fig. 6, we show the f - and g1-mode frequencies for the PNS model with

ρs = 1011 g/cm3 as a function of the square root of the normalized PNS average density, (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2.

With this data, we successfully find that the f - and g1-mode frequencies, which correspond to the ramp up signals, are well

expressed as

f(kHz) = −3.250− 0.978 ln(x) + 15.984x− 15.051x2, (7)

where x is the square root of the normalized PNS average density, i.e., x = (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2. In practice,

the frequency predicted from Eq. (7) is also plotted with the thick-solid line in the left panel of Fig. 6. Thus, using Eq. (7), one

could get the evolution of the PNS average density via the observed frequency of gravitational wave after supernova explosion.

In this study, since we consider only one progenitor model and one EOS, it is difficult to say how this relation is independent

of the models. Even so, this relation seems to be independent of the models at least in the early phase, as shown in Fig. A2

in Appendix A. Anyway, additional models should be considered in the future.

The relation similar to Eq. (7) has already been proposed, as a function of x in Sotani & Sumiyoshi (2019);

f(kHz) = 0.9733− 2.7171x+ 13.7809x2, (8)

and as a function of x̄ ≡ MPNS/R
2
PNS in the unit of M⊙/km

2 in Torres-Forné et al. (2019b);

f(kHz) = 12.4× 102x̄− 378× 103x̄2 + 4.24× 107x̄3, (9)

although in Torres-Forné et al. (2019b) the ramp up signal is identified as g2-mode in their classification. Eq. (8) are derived

for the f -mode frequency after the avoided crossing with the g1-mode with the PNS models provided by the 1D numerical

simulations, which are eventually collapsed into black hole. In the left panel of Fig. 6, we also plot the thick-dotted line

c⃝ 0000 RAS, MNRAS 000, 000–000
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What can we learn from SN GWs
• GW freqs. evolution strongly depend
on SN models, but…

• well expressed with average density
or surface gravity of PNS

Nov. 26, 2023 Joint RIKEN/N3AS Workshop on Mul?-Messenger Astrophysics @HAWAII2023 10

On the other hand, in the left panel of Fig. 5, we show the
f- and g1-mode frequencies as a function of the square root
of the normalized PNS average density x. From this figure,
the f- and g1-mode frequencies, according to the gravita-
tional wave signals appearing in the numerical simulation,
are well fitted, such as

fðkHzÞ ¼ −1.410 − 0.443 lnðxÞ þ 9.337x − 6.714x2; ð3Þ

independently of the PNS models. The predicted values
from Eq. (3) are also plotted in the left panel of Fig. 5 with
the thick-solid line. That is, once we detect the supernova
gravitational waves, which could be the same as the
gravitational wave signals appearing in the numerical
simulations, we can extract the evolution of the PNS
average density by using Eq. (3). In the same figure, we
also show the empirical relation for the f-mode frequency
derived in Ref. [46], which is

ffðkHzÞ ¼ 0.9733 − 2.7171xþ 13.7809x2; ð4Þ

with the thick dashed line. We remark that this relation is
obtained for the case of the failed supernova with a general

relativistic simulation; i.e., the PNS considered in Ref. [46]
would eventually collapse to a black hole, focusing on the
region of ðMPNS=1.4 M⊙Þ1=2ðRPNS=10 kmÞ−3=2 ≳ 0.1. By
comparing this empirical relation to the gravitational wave
frequencies obtained in this study and the fitting formula
given by Eq. (3), one can observe a significant deviation for
the later phase. Unfortunately, we cannot identify why this
deviation exists, but it may be because the dependence of
the gravitational wave frequencies on the PNS average
density in a black hole formation is simply different from
that for the case of successful supernova, or it may come
from the treatment of the general relativistic effect in the
simulation. On the other hand, it is also suggested that the
gravitational wave frequency is expressed as a function of
the PNS surface gravity in Refs. [25,52]. In a similar way,
we also show the gravitational wave frequencies for various
PNS models as a function of the PNS surface gravity in the
right panel of Fig. 5, where the thick solid line denotes the
fitting formula given by

fðkHzÞ¼−0.0752−0.2600 lnðx̄3Þþ0.7446x̄3−0.0600x̄23;

ð5Þ

where x̄3 denotes x̄=0.001 and x̄ is the PNS surface gravity
defined by x̄≡MPNS=R2

PNS in units of M⊙ km−2. For
reference, we also show the universal relation derived in
Ref. [25] with the thick dotted line, where the standard
deviation of the data is 76 Hz. We note that the universal
relation in Ref. [25] had a missing factor and the amended
relation is plotted in this figure [69], instead of the original
relation. Since we have already shown that the relation
between the PNS surface gravity and the average density
weakly depends on the PNS model (top panel of Fig. 2), we
expect that the gravitational wave frequencies corresponding
to the signals in numerical simulation could also be expressed
as a function of the PNS surface gravity almost independ-
ently of the PNS models. However, the gravitational wave

FIG. 4. The f- and g1-mode frequencies for various PNS
models are shown as a function of the post-bounce time.

FIG. 5. In the left panel, the f- and g1-mode frequencies for various PNS models are shown as a function of the square root of the
normalized PNS average density. The thick solid line is the fitting formula for the g1-mode (f-mode) frequency before (after) the
avoided crossing between the f and g1 modes, which is given by Eq. (3), while the thick dashed line denotes the empirical formula
derived in Ref. [46] [Eq. (4)]. On the other hand, in the right panel, the same frequencies shown in the left panel are shown as a function
of the surface gravity, where the thick solid line denotes the fitting formula given by Eq. (5). The thick dotted line is the universal relation
derived in Ref. [25], but it is amended [69].
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Signal of the g1-mode oscillations?
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Jakobus+23

2

Abbildung 1. GW spectrograms for z85 (top) and z35 (bot-
tom) using the CMF-EoS (left) and SFHx-EoS (right). The sa-
me logarithmic color scale for the amplitude |h+| is used for
all models. Models z85:CMF, z85:SFHx and z35:CMF exhibit
a distinct second frequency band from the 2g1-mode, which
branches o↵ the dominant band after a few hundred millise-
conds.

energy per baryon E0/B = �15.2MeV, asymmetry ener-
gy S0 = 31.9MeV, incompressibility K0 = 267MeV, and
a maximum Tolman-Oppenheimer-Volko↵massMmax

TOV
=

2.10M� [43]. This EoS has recently been studied in the
context of neutron star merger and 1D CCSN simulati-
ons [49, 50]. The second EoS, used for runs z35:SFHx

and z85:SFHx, is the purely hadronic relativistic mean-
field SFHx model [42]. Nuclear matter properties for the
SFHx EoS are: nsat = 0.16 fm�3, E0/B = �16.16MeV,
S0 = 28.67MeV, K0 = 239MeV, and Mmax

TOV
= 2.13M�.

Results.— Dynamically, the CMF and SFHx models ex-
hibit similar behaviour. Both z85 models undergo shock
revival followed by early black hole formation, albeit ear-
lier by more than 0.2 s in z85:CMF. The z35 models both
explode. The GW signals of the CMF and SFHx models
exhibit distinctive di↵erences, however. Figure 1 shows
GW spectrograms computed using the Morlet wavelet
transform.

The early phase of GW emission is still similar for both
EoSs. The z85 models show low-frequency emission at
⇠100Hz due to prompt convection and early SASI activi-
ty [13, 14, 51, 52]; this is largely absent in the z35models.
Subsequently, the PNS surface f/g-mode [14, 20, 26, 27]
appears as a prominent emission band with frequencies
that increase from ⇠300Hz to above 1000Hz. The f/g-
mode frequency rises slightly more rapidly in the CMF

models.

The most striking di↵erences are found in another
emission band of decreasing frequency that branches o↵
the dominant f/g-mode between 0.2 s and 0.35 s after
bounce, except in z35:SFHx which shows no such signal.
A linear mode analysis (see [20, 27, 28, 31] for the metho-
dology) identifies this frequency band as the decreasing
branch of the 2g1 mode (Zha et al. in prep.), i.e., a qua-
drupolar g-mode with one node, with an eigenfunction
mostly confined to the PNS core region (core g-mode).
Henceforth we refer to the decreasing branch simply as
the 2g1 mode for short1.

The mode frequency f2g1 is systematically lower in
z85:CMF compared to z85:SFHx. In z85:CMF, f2g1 decre-
ases from ⇠600Hz at 0.2 s to ⇠220Hz at 0.32 s, at which
point the model collapse to a BH. In z85:SFHx, BH col-
lapse occurs later and f2g1 evolves more slowly from a
higher frequency of ⇠800Hz down to ⇠560Hz at 0.58 s.
In z35:CMF, the 2g1 mode lives at similarly low frequen-
cies as in z85:SFHx, i.e., in the range 220-600Hz.
To our knowledge, such pronounced emission in the

declining 2g1-mode frequency band as in the CMF models
(and to a lesser extent model z85:SFHx) has not been ob-
served in other simulations with energy-dependent neu-
trino transport, where the primary trace of the 2g1 mode
has usually been an emission gap at the avoided crossing
with the f -mode [20]. The 2g1-mode has been found in si-
mulations with a more approximate neutrino treatment,
however [27, 30, 53, 54].
To further confirm the nature of the mode, we per-

form a spatially resolved Fourier analysis of the inte-
grand of the modified quadrupole formula using high-
time-resolution simulation output with sampling frequen-
cy 104 Hz. To detect quadrupolar motions as a function
of radius and frequency, we perform the integral over an-
gle only, and obtain a radius-dependent measure q(r, t)
of quadrupolar perturbations,

q(r, t) =
32⇡3/2Gp

15 c4

Z ⇡

0

d✓ �6r3 sin ✓

⇥
⇢

@

@t

�
Sr(3 cos

2 ✓ � 1)
�
+

3

r
S✓ sin ✓ cos ✓

�
. (1)

Here � is the conformal factor of the space-time metric,
and Sr and S✓ are the orthonormal components of the
relativistic momentum density.
We then obtain spectrograms of q(r, t) (Figure 2, first

two panels) using the Fast-Fourier transforms (FFT) in a
fixed time window �t and apply additional denoising by
convolving the FFT with a weighted sum of radial basis
functions [55].

1 The dominant band with increasing frequency follows the incre-
asing branch of the 2g1 mode initially and then the f -mode after
the avoided crossing of the two modes. Note that the mode classi-
fication is, e.g., sensitive to the boundary condition in the linear
analysis.

f-mode

g1-mode?



Strong correlations M/R2 & M/R3

• Unlike cold NSs, we find the strong correlations in PNS 
properties 
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ðMPNS=1.4 M⊙Þ1=2ðRPNS=10 kmÞ−3=2, for various PNS
models. In both panels, the PNSs evolve from the bottom
left to the top right. From this figure, in particular, we can
confirm that the surface gravity has quite weak dependence
on the square root of the normalized PNS average density,
which was originally pointed out in Ref. [50]. With these
results, we derive the fitting formula as

MPNS=R2
PNSðkm−1Þ ¼ ½−1.985 − 0.465 lnðxÞ þ 19.247x&

× 10−3; ð1Þ

where x denotes the square root of the normalized PNS
average density, i.e.,

x≡
!

MPNS

1.4 M⊙

"
1=2

!
RPNS

10 km

"−3=2
; ð2Þ

which is shown in the top panel of Fig. 2 with the thick-
solid line. To be honest, currently we cannot understand
why this relationship appears in the PNS models because
this type of relation cannot be seen in cold neutron stars;
however, this feature may be a key for understanding the
physics of PNSs.

III. GRAVITATIONAL WAVE
ASTEROSEISMOLOGY

For the PNS models discussed in the previous section,
we make a linear analysis, where we simply adopt the
relativistic Cowling approximation in this study; i.e.,

the metric perturbations are neglected during the fluid
oscillations. The perturbation equations are derived by
linearizing the energy conservation law, and they finally
become the ordinary differential equations for the
Lagrangian displacement of the fluid element. By imposing
appropriate boundary conditions, the problem to solve
becomes an eigenvalue problem with respect to the
eigenvalue of ω, which directly corresponds to the eigen-
frequency f via f ¼ ω=ð2πÞ. The imposed boundary
conditions are the regularity condition at the center and
the condition that the Lagrangian perturbation of pressure
should be zero at the PNS surface. The concrete perturba-
tion equations and boundary conditions are the same as
shown in Ref. [21]. In this study, we focus on only the
l ¼ 2 oscillation modes because they are considered to
become energetically dominant in the gravitational wave
emission. We note that one can qualitatively discuss the
behavior of gravitational wave frequency even with the
relativistic Cowling approximation, but the frequencies
with the approximation deviate by ∼20% from those
without the approximation [51].
In Fig. 3, we show the PNS oscillation frequencies

determined by solving the eigenvalue problem with open
marks on the contour, which denotes the gravitational
wave signals appearing in the numerical simulation, for
the PNS model with TGLD (see the Appendix for the other
PNS models), focusing on only the f-, gi-, and pi-mode
frequencies with i ¼ 1; 2. Here, the gravitational wave
signals are calculated with the same procedure as in
Ref. [68], using the numerical data obtained by simulations.
From this figure, as in Ref. [22], one can obviously see that
the gravitational wave signals in numerical simulation are
identified by the g1-mode (f-mode) oscillation from the
PNS before (after) the avoided crossing between the f and
g1 modes. In Fig. 4, we also plot the time evolution of the
f- and g1-mode frequencies for various PNS models. As in
Ref. [17], one can observe that the time evolution of the
gravitational waves strongly depends on the PNS models
(see also Fig. 9).

FIG. 2. PNS surface gravity (top) and compactness (bottom) are
shown as a function of the square root of the normalized PNS
average density for various models. The thick solid line in the top
panel is the fitting formula given by Eq. (1).

FIG. 3. Comparing the gravitational wave signals appearing in
the numerical simulation (background contour) to the PNS
frequencies (open marks) determined by solving the eigenvalue
problem for the PNS model with TGLD.
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which is shown in the top panel of Fig. 2 with the thick-
solid line. To be honest, currently we cannot understand
why this relationship appears in the PNS models because
this type of relation cannot be seen in cold neutron stars;
however, this feature may be a key for understanding the
physics of PNSs.

III. GRAVITATIONAL WAVE
ASTEROSEISMOLOGY

For the PNS models discussed in the previous section,
we make a linear analysis, where we simply adopt the
relativistic Cowling approximation in this study; i.e.,

the metric perturbations are neglected during the fluid
oscillations. The perturbation equations are derived by
linearizing the energy conservation law, and they finally
become the ordinary differential equations for the
Lagrangian displacement of the fluid element. By imposing
appropriate boundary conditions, the problem to solve
becomes an eigenvalue problem with respect to the
eigenvalue of ω, which directly corresponds to the eigen-
frequency f via f ¼ ω=ð2πÞ. The imposed boundary
conditions are the regularity condition at the center and
the condition that the Lagrangian perturbation of pressure
should be zero at the PNS surface. The concrete perturba-
tion equations and boundary conditions are the same as
shown in Ref. [21]. In this study, we focus on only the
l ¼ 2 oscillation modes because they are considered to
become energetically dominant in the gravitational wave
emission. We note that one can qualitatively discuss the
behavior of gravitational wave frequency even with the
relativistic Cowling approximation, but the frequencies
with the approximation deviate by ∼20% from those
without the approximation [51].
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determined by solving the eigenvalue problem with open
marks on the contour, which denotes the gravitational
wave signals appearing in the numerical simulation, for
the PNS model with TGLD (see the Appendix for the other
PNS models), focusing on only the f-, gi-, and pi-mode
frequencies with i ¼ 1; 2. Here, the gravitational wave
signals are calculated with the same procedure as in
Ref. [68], using the numerical data obtained by simulations.
From this figure, as in Ref. [22], one can obviously see that
the gravitational wave signals in numerical simulation are
identified by the g1-mode (f-mode) oscillation from the
PNS before (after) the avoided crossing between the f and
g1 modes. In Fig. 4, we also plot the time evolution of the
f- and g1-mode frequencies for various PNS models. As in
Ref. [17], one can observe that the time evolution of the
gravitational waves strongly depends on the PNS models
(see also Fig. 9).

FIG. 2. PNS surface gravity (top) and compactness (bottom) are
shown as a function of the square root of the normalized PNS
average density for various models. The thick solid line in the top
panel is the fitting formula given by Eq. (1).

FIG. 3. Comparing the gravitational wave signals appearing in
the numerical simulation (background contour) to the PNS
frequencies (open marks) determined by solving the eigenvalue
problem for the PNS model with TGLD.
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Magnetar QPOs and torsional 
oscillations
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Magnetar QPOs
• Quasi-periodic oscillations (QPOs) in the afterglow of giant flares 
from soft-gamma repeaters (SGRs) 
(Barat+83, Israel+05, Strohmayer & Watts 05, Watts & Strohmayer 06)
• SGR 0526-66 (5th/3/1979) : 43 Hz
• SGR 1900+14 (27th/8/1998) : 28, 54, 84, 155 Hz
• SGR 1806-20 (27th/12/2004) : 18, 26, 30, 92.5, 150, 626.5, 1837 Hz

• additional QPO in SGR 1806-20 : 57 Hz (Huppenkothen+14)
• additional QPOs : 51.4, 97.3, 157 Hz (Miller+18)
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• Crustal torsional oscillation ?
• Magnetic oscillations ?

density

NS crust



Elasticity in NS crust

density

crustcore (Strohmayer+ 91) spherical

linear response : fluid
(Landau)

slab-like

à two independent oscillations
 (i) sphericzal + cylindrical (sp+cy)
(ii) tube + bubble (tu+bu)

à bubble ~ spherical
tube ~ cylindrical

µcy =
2
3
ECoul ×102.1(w2−0.3)

cylindrical

ECoul : Coulomb energy per unit volume
w2 : volume fraction

(Potekhin+ 98)
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Figure 1. (Color online) Left: Profile of the shear modulus in the tube phase (thin lines) and bubble phase (thick lines), calculated for
the neutron star models with M = 1.4M⊙ and R = 12 km. Here, K0 is fixed at 180 MeV, while L takes the value as labeled in the unit
of MeV. Right: For the neutron star model with M = 1.4M⊙ and R = 12 km constructed with K0 = 180 MeV and L = 55.2 MeV, the
profile of the shear modulus in the phase of spherical nuclei (Sp) and in the phase of cylindrical nuclei (Cy) is shown as well as that in
the tube (CH) phase and the bubble (SH) phase.

µcy =
2
3
ECoul × 102.1(w2−0.3), (5)

where ECoul and w2 denote the Coulomb energy per volume of a Wigner-Seitz cell and the volume fraction of cylindrical nuclei,

respectively, and the coefficient of 2/3 comes from the average over all directions between the wave-vector of the distortion

and the elongated direction under the assumption that crystallites of cylindrical nuclei randomly point. We remark that in

the liquid drop model ECoul is given by

ECoul =
π
2
(ρpRp)

2w2

[
ln
(

1
w2

)
− 1 + w2

]
, (6)

where ρp and Rp are the proton charge density and the proton radius of a cylindrical liquid drop (Ravenhall, Pethick &

Wilson 1983). By following a similar line of argument, it was shown that the deformation energy in the phase of slab-like

nuclei becomes of higher order with respect to the displacement. That is, this phase behaves as a fluid within the linear

response. This is the reason why one can consider the torsional oscillations inside the phases of spherical and cylindrical nuclei

separately from those inside the phases of tubes and bubbles.

The shear modulus in the tube (bubble) phase, i.e., µch (µsh), can be derived in a similar fashion to that in the phase of

cylindrical (spherical) nuclei, because the liquid crystalline structure of tubes (bubbles) is the same as that in the phase of

cylindrical (spherical) nuclei. In this study, therefore, we adopt Eq. (5) for the tube phase and Eq. (4) for the bubble phase

by properly replacing the relevant quantities in these formulae: In the tube phase, w2 in Eq. (5) (including ECoul) is replaced

by the volume fraction of a gas of dripped neutrons, while in the bubble phase ni and Z are replaced by the number density

of bubbles and the effective charge number Zbubble of a bubble, respectively (Sotani, Iida & Oyamatsu 2017a). In practice,

Zbubble is given by Zbubble = nQVbubble, with the volume of the bubble, Vbubble, and the effective charge number density of

the bubble, nQ, defined by the difference of the charge number density inside the bubble from that outside the bubble, i.e.,

nQ = −ne − (np − ne) = −np with the proton number density outside the bubble (np) and the number density of a uniform

electron gas (ne).

In Fig. 1, we illustrate the profile of the shear modulus inside the tube and bubble phases for neutron star models

constructed from the first three sets of the OI-EOSs listed in Table 1. From this figure, one can observe that the shear

modulus becomes discontinuous at the transition between the tube and bubble phases, which is similar to the case of the

transition between the phases of spherical and cylindrical nuclei (Sotani, Iida & Oyamatsu 2018). In addition, it is to be noted

that the shear modulus in the tube phase can decrease as the density increases and that this tendency becomes stronger for

larger L. This tendency may well come from the decrease of the volume fraction of a gas of dripped neutrons with density

(e.g., Watanabe & Iida (2003)).

4 TORSIONAL OSCILLATION FREQUENCIES AND COMPARISON WITH QPOS

We now turn to evaluations of the eigenfrequencies of fundamental torsional oscillations in the sphere-cylinder and tube-

bubble layers of the crust of a neutron star. To this end, we start with the perturbation equation in a spherical coordinate

system, which is given by linearizing the relativistic equation of motion that determines the torsional oscillations (Schumaker

& Thorne 1983; Sotani, Kokkotas & Stergioulas 2007) as
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than !Ee, which is positive. Consequently, the screening
makes the equilibrium value of rN larger than that in the
nonscreening limit, given by

rN
!0" = # dEsurf

4"!nxe"2fd
$1/3

. !41"

On the other hand, the negligible screening effect on u
suggests that the pressure corrections due to the screening
through the Coulomb pressure and the electron pressure
%see the last two terms on the right side of Eq. !24"& are
negligibly small.

We proceed to see how the phase structure changes with
the strength of the surface tension C2 and the baryon density
nb. We find from Figs. 5 and 6 that as C2 decreases, the phase
boundaries in the case with screening approach those in the
case without screening. This is consistent with the fact that
for weaker surface tension, the equilibrium size of the spatial
structure becomes smaller, leading to smaller rN/#TF

!e" and
rc/#TF

!e". As nb increases with C2 fixed, on the other hand, the
screening-induced change in the phase boundaries becomes
more appreciable; the increase in the transition density be-
tween the cylindrical hole to the spherical hole phase is
larger than that between the slab to the cylindrical hole phase
while being smaller than that between the spherical hole to
the uniform phase. This is partly because #TF

!e" decreases with
increasing density and partly because at fixed nb, the higher
dimensionality has the larger equilibrium values of rN and rc.
This dimensionality dependence, which was also obtained in
earlier investigations based on various nuclear models (see,
e.g., Refs. [4,5,8,9], stems from the fact that generally the
equilibrium values of the surface energy density wsurf and

surface tension Esurf are almost degenerate among the five
crystalline phases at fixed nb and thus the equilibrium value
of rN behaves roughly as rN$d [see Eq. (12)].

In order to examine the influence of the screening on the
phase boundaries in further detail, we list in Table I the tran-

FIG. 6. Zero-temperature phase diagram of supernova matter on
the nb vs C2 plane. The solid lines are the phase boundaries obtained
for the case allowing for the electron screening. The dashed lines
are for the case ignoring the electron screening, which are taken
from the lower left panel in Fig. 3 of Ref. [9].

FIG. 7. Size of a nucleus or bubble rN and of a Wigner-Seitz cell
rc in neutron star matter calculated for C2=0.1, 1.0, and 2.5. The
Thomas-Fermi screening length #TF

!e" is also plotted. The solid lines
are the results for the case with screening and the dashed lines are
the results for the case without screening, which are taken from Fig.
5 of Ref. [8]. The symbols SP, C, S, CH, and SH stand for sphere,
cylinder, slab, cylindrical hole, and spherical hole, respectively.

FIG. 8. Size of a nucleus or bubble rN and of a Wigner-Seitz cell
rc in supernova matter calculated for YL=0.3 and C2=0.1, 1.0, and
2.5. The Thomas-Fermi screening length #TF

!e" is also plotted. The
solid lines are the results for the case with screening, and the dashed
lines are the results for the case without screening, which are taken
from Fig. 5 of Ref. [9]. The symbols SP, C, S, CH, and SH stand for
sphere, cylinder, slab, cylindrical hole, and spherical hole, respec-
tively.
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Constraint on nuclear parameters
• observed freq. are well identified with crustal torsional 
oscillations, which tell us the constraint on L
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Figure 4. Same as Fig. 3, but for the neutron star models with 1.3M⊙ and 13 km in the left panel and with 1.8M⊙ and 12 km in the
right panel. The values of L for the vertical thick and thin lines are respectively L = 70.8 and 67.5 MeV in the left panel and L = 63.5
and 59.6 MeV in the right panel.
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Figure 5. The newly suggested QPOs in SGR 1806-20, i.e., 51.4, 97.3, and 157 Hz (Miller, Chirenti & Strohmayer 2018), which are
shown by the horizontal solid lines, are compared with the crustal torsional oscillations for the neutron star model with 1.3M⊙ and 13
km, where the original QPOs are also shown for reference. The 51.4 and 97.3 Hz QPOs may be identified by the ℓ = 8 and 15 fundamental
torsional oscillations inside the tube and bubble phases, while the 157 Hz QPO may be identified by the ℓ = 17 fundamental torsional
oscillations inside the spherical and cylindrical nuclei phases.

In the same figure (Fig. 3), we show the ℓ = 2, 3, and 4 fundamental frequencies excited inside the tube and bubble phases,

which are shown by the painted region. In each painted region, the lower and upper boundaries correspond to the results

with the maximum (R = 1) and minimum enthalpy (R = 0). From this figure, we find that ℓ = 4 fundamental frequency

corresponds to the 26 Hz QPO, which can not be explained by the torsional oscillations inside the phases of spherical and

cylindrical nuclei.

In the similar way, we calculate the neutron star models with (M,R) = (1.3M⊙, 13km) and (1.8M⊙, 12km), whose results

are shown in Fig. 4, where in the both panels the vertical thick and thin lines denote the suitable values of L for explaining the

QPOs except for the 26 Hz QPO in SGR 1806-20 by the torsional oscillations inside the phases of the spherical and cylindrical

nuclei, i.e., L = 70.8 and 67.5 MeV for the neutron star model with 1.3M⊙ and 13 km, while L = 63.5 and 59.6 MeV for that

with 1.8M⊙ and 12 km. On this figure, we put the expectation of the ℓ = 2, 3, and 4 fundamental frequencies excited inside the

tube and bubble phases. Since the dependence on L for the fundamental frequencies in the phases of spherical and cylindrical

nuclei is different from that for in the phases of the tube and bubble, to explain the QPOs with using the oscillations in the

both phases, one may select the suitable neutron star model. In fact, one can observe that the massive neutron star model

may be a little marginal for explaining the 26 Hz QPO with the ℓ = 4 fundamental oscillations inside the tube and bubble

phase together with the identification of the other QPOs by the oscillation in the phases of spherical and cylindrical nuclei.

That is, the less massive neutron star model seems to be more suitable in our identification. This tendency is consistent with

the neutron star models considered as a result of the comparison of the constraint on K0, which is obtained by the overtone

frequency in the phases of spherical and cylindrical nuclei, with the terrestrial constraint on K0 (Sotani, Iida & Oyamatsu

2018). Furthermore, considering the suitable value of L ∼ 70 MeV, the less massive neutron star model is consistent with the

mass formula for a low-mass neutron star (Sotani et al. 2014).

As an advantage of the smaller shear modulus in the tube phase, which leads to the smaller fundamental frequencies

c⃝ 0000 RAS, MNRAS 000, 000–000
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Figure 8. The suitable value of L for explaining the QPOs observed in SGR 1900+14 with the crustal torsional oscillations for various
neutron star models with Ns/Nd = 1.0.
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1900+14 for the neutron star models with M = 1.4−1.8M⊙, R = 10−14 km, and Ns/Nd = 1.0. The painted region denotes the allowed
region of L, with which both of QPOs can be explained.

4.2 The 1st overtones

Next, we examine the properties of the 1st overtones of torsional oscillations, i.e., 1tℓ. The frequencies are considered to

be associated with the crust thickness, ∆R, such as 1tℓ ∝ vs/∆R (Hansen & Cioffi 1980), while ∆R depends on the EOS

parameters (Sotani, Iida & Oyamatsu 2017b). Thus, via the identification of the observed QPO with the overtone of crustal

torsional oscillations, one may be obtain the information about the EOS parameters (Sotani et al. 2012).

In order to find a parameter constructed with K0 and L, with which the frequencies of the 1st overtone are expressed

well, we consider the combination such as (Ki
0L

j)1/(i+j) with integer numbers i and j. Then, we find the suitable combination,

i.e.,

ς = (K4
0L5)1/9. (13)

We remark that the combination of K0 and L in ς is different from that in η defined by η = (K0L
2)1/3, which is good
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Figure 10. Same as Fig. 9, but with Ns/Nd = 0.
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Magnetic effects
• the shift in the torsional oscillation freqs.

obeys the following formula 
(HS+2007; Gabler+2018)

• for the overtones, 
• for EOS NV
• for EOS DH

• Deviation of the magnetized NS freqs. 
from those of the non-magnetized ones 
• ≲ 3.4% for the EOS NV
• ≲ 7.5% for the EOS DH,

if we assume B ≈ 1015G
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Appendix A: Magnetic effects on the crustal
torsional oscillations

In this study, we ignored the effects of the magnetic field on
crustal torsional oscillations. The signal reported in Castro-
Tirado et al. (2021), seems to be weaker than that observed in
SGR 1806-20, which was estimated to be  (2�4)⇥1015 G (Co-
laiuda & Kokkotas 2011; Gabler et al. 2018). For smaller mag-
netic field strengths, i.e., B  1015 G, the presence of the mag-
netic field can hardly be imprinted in the oscillation spectra. For
B � 1015 G there is shifting in the torsional oscillation frequen-
cies, and a “continuous” spectrum appears if one considers re-
stricted geometries for the magnetic field (Levin 2007; Colaiuda
et al. 2009; van Hoven & Levin 2011; Colaiuda & Kokkotas
2011; Gabler et al. 2012, 2018) while for mixed poloidal-toroidal
fields the magnetoelastic oscillations spectrum is becoming dis-
crete (Colaiuda & Kokkotas 2012).

The effect of the magnetic field on pure torsional oscillations
has been studied in Sotani et al. (2007). There it was shown that
for a variety of neutron star models and EOS the shift in the
torsional oscillations frequencies obeys the following formula

`fn

`f
(0)

n

⇡
"
1 + `↵n

✓
B

Bµ

◆2
#1/2

, (A.1)

where `f
(0)

n is the torsional mode frequency of the n-th overtone
of a non-magnetized neutron star, while `fn is the frequency of
the equivalent magnetized one with the same parameters (M , R,
EOS). B is the strength of the surface magnetic field normal-
ized by Bµ = 4 ⇥ 1015 G. In a most recent calculation, this re-
sult is almost confirmed through two-dimensional analysis with
a poloidal magnetic field (Gabler et al. 2018), where the oscil-
lation frequencies are named as magnetically modified torsional
modes.

In the previous studies (Sotani et al. 2007), the coefficients
`↵n, have been calculated only for n = 0, 1 and their values
vary from 0.3 to 0.5 for EOS NV (Negele & Vautherin 1973)
and 0.4 to 1.5 for EOS DH (Douchin & Haensel 2001). Here
we calculated 2↵n for larger values of n as it is shown in Fig-
ure A.1. The values seem to reach a maximum value of about
2↵n ⇡ 2 � 2.5 for EOS DH and 2↵n ⇡ 0.8 � 1.1 for EOS NV.
Thus the deviation of the magnetized neutron star frequencies
from those of the non-magnetized ones are <⇠ 3.4% for the EOS
NV and <⇠ 7.5% for the EOS DH, if we assume B ⇠ 1015 G.
These values are still within the limits of uncertainty (⇠ 10%)
estimated in Castro-Tirado et al. (2021). For values of the mag-
netic field significantly higher than B ⇠ 1015 G, our approach is
failing.

Appendix B: Can the 836 Hz QPO be the 2nd
overtone?

In the main part of the article, we identified the lowest QPO fre-
quency at 836 Hz as the 1st overtone. In this appendix, we ex-
amine the possibility of identifying the lowest QPO as the 2nd
overtone. In Fig. B.1 we plot the 1st and 2nd overtone of crustal
torsional oscillations for a neutron star model with 1.4M� and
14 km as a function of & . In the same figure we draw the observed
QPO frequency and the aforementioned values for & and &QPO.
It is apparent that the 836 Hz QPO frequency can be identified
as the 2nd overtone. In fact, as it is shown in Fig. B.2, all four
QPOs observed in GRB 200415A can be identified as the 2nd,
5th, 8th, and 16th overtones, if & = 142.1 MeV. However, as

it was mentioned earlier, the overtone frequencies increase with
compactness, which implies that the suitable & values for identi-
fying the observed QPOs should be larger, beyond the accepted
values for & . Therefore, for being in agreement with the range
& = 85.3�135.1 MeV, we will need to consider the neutron star
models with very small and somehow unphysical compactness.
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Figure 3. The frequencies of the fundamental n = 0 and the first overtone for ℓ = 2, 3 and 4 torsional modes as functions of the normalized magnetic field
(B/Bµ). The neutron star mass is 1.4 M⊙ and we show results for EOS A + DH.

Figure 4. The frequencies of the fundamental n = 0 and ℓ = 2 torsional mode as functions of the normalized magnetic field (B/Bµ). The neutron star masses
are 1.4 M⊙ and we show only results for four EOS, that is, A + DH, A + NV, L + DH and L + NV. The lines correspond to fits according to the empirical
formula, equation (79), with coefficient values from Table 5. As seen here, our empirical formula, equation (79), agrees very well with the numerical results.
We stress that these results were obtained in the approximation of neglecting magnetic-field-induced deformations of the background star and couplings to ℓ

± 2 terms.

and crust model, uniformly covering the allowed mass versus radius parameter space. Our numerical results have shown that torsional mode
frequencies are sensitive to the crust model if the high-density EOS is very stiff (such as EOS L). In addition, torsional mode frequencies
are drastically affected by a dipole magnetic field, if the latter has a strength exceeding roughly 1015 G. The effect of the magnetic field is
surprisingly sensitive to the adopted crust model. Using our extended numerical results we have derived empirical relations for the effect of the
magnetic field on torsional modes as well as for the crust thickness. We compare our numerical results to observed frequencies in SGRs and
find that certain high-density EOS and mass values are favoured over others in the non-magnetized limit. On the other hand, if the magnetic
field is strong, then its effect has to be taken into account in attempts to formulate a theory of asteroseismology for magnetars. This topic, as
well as the inclusion of global magnetosonic modes will be discussed in a separate publication (Sotani et al., in preparation).
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Appendix A: Magnetic effects on the crustal
torsional oscillations

In this study, we ignored the effects of the magnetic field on
crustal torsional oscillations. The signal reported in Castro-
Tirado et al. (2021), seems to be weaker than that observed in
SGR 1806-20, which was estimated to be  (2�4)⇥1015 G (Co-
laiuda & Kokkotas 2011; Gabler et al. 2018). For smaller mag-
netic field strengths, i.e., B  1015 G, the presence of the mag-
netic field can hardly be imprinted in the oscillation spectra. For
B � 1015 G there is shifting in the torsional oscillation frequen-
cies, and a “continuous” spectrum appears if one considers re-
stricted geometries for the magnetic field (Levin 2007; Colaiuda
et al. 2009; van Hoven & Levin 2011; Colaiuda & Kokkotas
2011; Gabler et al. 2012, 2018) while for mixed poloidal-toroidal
fields the magnetoelastic oscillations spectrum is becoming dis-
crete (Colaiuda & Kokkotas 2012).

The effect of the magnetic field on pure torsional oscillations
has been studied in Sotani et al. (2007). There it was shown that
for a variety of neutron star models and EOS the shift in the
torsional oscillations frequencies obeys the following formula

`fn

`f
(0)

n

⇡
"
1 + `↵n

✓
B

Bµ

◆2
#1/2

, (A.1)

where `f
(0)

n is the torsional mode frequency of the n-th overtone
of a non-magnetized neutron star, while `fn is the frequency of
the equivalent magnetized one with the same parameters (M , R,
EOS). B is the strength of the surface magnetic field normal-
ized by Bµ = 4 ⇥ 1015 G. In a most recent calculation, this re-
sult is almost confirmed through two-dimensional analysis with
a poloidal magnetic field (Gabler et al. 2018), where the oscil-
lation frequencies are named as magnetically modified torsional
modes.

In the previous studies (Sotani et al. 2007), the coefficients
`↵n, have been calculated only for n = 0, 1 and their values
vary from 0.3 to 0.5 for EOS NV (Negele & Vautherin 1973)
and 0.4 to 1.5 for EOS DH (Douchin & Haensel 2001). Here
we calculated 2↵n for larger values of n as it is shown in Fig-
ure A.1. The values seem to reach a maximum value of about
2↵n ⇡ 2 � 2.5 for EOS DH and 2↵n ⇡ 0.8 � 1.1 for EOS NV.
Thus the deviation of the magnetized neutron star frequencies
from those of the non-magnetized ones are <⇠ 3.4% for the EOS
NV and <⇠ 7.5% for the EOS DH, if we assume B ⇠ 1015 G.
These values are still within the limits of uncertainty (⇠ 10%)
estimated in Castro-Tirado et al. (2021). For values of the mag-
netic field significantly higher than B ⇠ 1015 G, our approach is
failing.

Appendix B: Can the 836 Hz QPO be the 2nd
overtone?

In the main part of the article, we identified the lowest QPO fre-
quency at 836 Hz as the 1st overtone. In this appendix, we ex-
amine the possibility of identifying the lowest QPO as the 2nd
overtone. In Fig. B.1 we plot the 1st and 2nd overtone of crustal
torsional oscillations for a neutron star model with 1.4M� and
14 km as a function of & . In the same figure we draw the observed
QPO frequency and the aforementioned values for & and &QPO.
It is apparent that the 836 Hz QPO frequency can be identified
as the 2nd overtone. In fact, as it is shown in Fig. B.2, all four
QPOs observed in GRB 200415A can be identified as the 2nd,
5th, 8th, and 16th overtones, if & = 142.1 MeV. However, as

it was mentioned earlier, the overtone frequencies increase with
compactness, which implies that the suitable & values for identi-
fying the observed QPOs should be larger, beyond the accepted
values for & . Therefore, for being in agreement with the range
& = 85.3�135.1 MeV, we will need to consider the neutron star
models with very small and somehow unphysical compactness.
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Appendix A: Magnetic effects on the crustal
torsional oscillations

In this study, we ignored the effects of the magnetic field on
crustal torsional oscillations. The signal reported in Castro-
Tirado et al. (2021), seems to be weaker than that observed in
SGR 1806-20, which was estimated to be  (2�4)⇥1015 G (Co-
laiuda & Kokkotas 2011; Gabler et al. 2018). For smaller mag-
netic field strengths, i.e., B  1015 G, the presence of the mag-
netic field can hardly be imprinted in the oscillation spectra. For
B � 1015 G there is shifting in the torsional oscillation frequen-
cies, and a “continuous” spectrum appears if one considers re-
stricted geometries for the magnetic field (Levin 2007; Colaiuda
et al. 2009; van Hoven & Levin 2011; Colaiuda & Kokkotas
2011; Gabler et al. 2012, 2018) while for mixed poloidal-toroidal
fields the magnetoelastic oscillations spectrum is becoming dis-
crete (Colaiuda & Kokkotas 2012).

The effect of the magnetic field on pure torsional oscillations
has been studied in Sotani et al. (2007). There it was shown that
for a variety of neutron star models and EOS the shift in the
torsional oscillations frequencies obeys the following formula

`fn

`f
(0)

n

⇡
"
1 + `↵n

✓
B

Bµ

◆2
#1/2

, (A.1)

where `f
(0)

n is the torsional mode frequency of the n-th overtone
of a non-magnetized neutron star, while `fn is the frequency of
the equivalent magnetized one with the same parameters (M , R,
EOS). B is the strength of the surface magnetic field normal-
ized by Bµ = 4 ⇥ 1015 G. In a most recent calculation, this re-
sult is almost confirmed through two-dimensional analysis with
a poloidal magnetic field (Gabler et al. 2018), where the oscil-
lation frequencies are named as magnetically modified torsional
modes.

In the previous studies (Sotani et al. 2007), the coefficients
`↵n, have been calculated only for n = 0, 1 and their values
vary from 0.3 to 0.5 for EOS NV (Negele & Vautherin 1973)
and 0.4 to 1.5 for EOS DH (Douchin & Haensel 2001). Here
we calculated 2↵n for larger values of n as it is shown in Fig-
ure A.1. The values seem to reach a maximum value of about
2↵n ⇡ 2 � 2.5 for EOS DH and 2↵n ⇡ 0.8 � 1.1 for EOS NV.
Thus the deviation of the magnetized neutron star frequencies
from those of the non-magnetized ones are <⇠ 3.4% for the EOS
NV and <⇠ 7.5% for the EOS DH, if we assume B ⇠ 1015 G.
These values are still within the limits of uncertainty (⇠ 10%)
estimated in Castro-Tirado et al. (2021). For values of the mag-
netic field significantly higher than B ⇠ 1015 G, our approach is
failing.

Appendix B: Can the 836 Hz QPO be the 2nd
overtone?

In the main part of the article, we identified the lowest QPO fre-
quency at 836 Hz as the 1st overtone. In this appendix, we ex-
amine the possibility of identifying the lowest QPO as the 2nd
overtone. In Fig. B.1 we plot the 1st and 2nd overtone of crustal
torsional oscillations for a neutron star model with 1.4M� and
14 km as a function of & . In the same figure we draw the observed
QPO frequency and the aforementioned values for & and &QPO.
It is apparent that the 836 Hz QPO frequency can be identified
as the 2nd overtone. In fact, as it is shown in Fig. B.2, all four
QPOs observed in GRB 200415A can be identified as the 2nd,
5th, 8th, and 16th overtones, if & = 142.1 MeV. However, as

it was mentioned earlier, the overtone frequencies increase with
compactness, which implies that the suitable & values for identi-
fying the observed QPOs should be larger, beyond the accepted
values for & . Therefore, for being in agreement with the range
& = 85.3�135.1 MeV, we will need to consider the neutron star
models with very small and somehow unphysical compactness.
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Appendix A: Magnetic effects on the crustal
torsional oscillations

In this study, we ignored the effects of the magnetic field on
crustal torsional oscillations. The signal reported in Castro-
Tirado et al. (2021), seems to be weaker than that observed in
SGR 1806-20, which was estimated to be  (2�4)⇥1015 G (Co-
laiuda & Kokkotas 2011; Gabler et al. 2018). For smaller mag-
netic field strengths, i.e., B  1015 G, the presence of the mag-
netic field can hardly be imprinted in the oscillation spectra. For
B � 1015 G there is shifting in the torsional oscillation frequen-
cies, and a “continuous” spectrum appears if one considers re-
stricted geometries for the magnetic field (Levin 2007; Colaiuda
et al. 2009; van Hoven & Levin 2011; Colaiuda & Kokkotas
2011; Gabler et al. 2012, 2018) while for mixed poloidal-toroidal
fields the magnetoelastic oscillations spectrum is becoming dis-
crete (Colaiuda & Kokkotas 2012).

The effect of the magnetic field on pure torsional oscillations
has been studied in Sotani et al. (2007). There it was shown that
for a variety of neutron star models and EOS the shift in the
torsional oscillations frequencies obeys the following formula
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Bµ
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, (A.1)

where `f
(0)

n is the torsional mode frequency of the n-th overtone
of a non-magnetized neutron star, while `fn is the frequency of
the equivalent magnetized one with the same parameters (M , R,
EOS). B is the strength of the surface magnetic field normal-
ized by Bµ = 4 ⇥ 1015 G. In a most recent calculation, this re-
sult is almost confirmed through two-dimensional analysis with
a poloidal magnetic field (Gabler et al. 2018), where the oscil-
lation frequencies are named as magnetically modified torsional
modes.

In the previous studies (Sotani et al. 2007), the coefficients
`↵n, have been calculated only for n = 0, 1 and their values
vary from 0.3 to 0.5 for EOS NV (Negele & Vautherin 1973)
and 0.4 to 1.5 for EOS DH (Douchin & Haensel 2001). Here
we calculated 2↵n for larger values of n as it is shown in Fig-
ure A.1. The values seem to reach a maximum value of about
2↵n ⇡ 2 � 2.5 for EOS DH and 2↵n ⇡ 0.8 � 1.1 for EOS NV.
Thus the deviation of the magnetized neutron star frequencies
from those of the non-magnetized ones are <⇠ 3.4% for the EOS
NV and <⇠ 7.5% for the EOS DH, if we assume B ⇠ 1015 G.
These values are still within the limits of uncertainty (⇠ 10%)
estimated in Castro-Tirado et al. (2021). For values of the mag-
netic field significantly higher than B ⇠ 1015 G, our approach is
failing.

Appendix B: Can the 836 Hz QPO be the 2nd
overtone?

In the main part of the article, we identified the lowest QPO fre-
quency at 836 Hz as the 1st overtone. In this appendix, we ex-
amine the possibility of identifying the lowest QPO as the 2nd
overtone. In Fig. B.1 we plot the 1st and 2nd overtone of crustal
torsional oscillations for a neutron star model with 1.4M� and
14 km as a function of & . In the same figure we draw the observed
QPO frequency and the aforementioned values for & and &QPO.
It is apparent that the 836 Hz QPO frequency can be identified
as the 2nd overtone. In fact, as it is shown in Fig. B.2, all four
QPOs observed in GRB 200415A can be identified as the 2nd,
5th, 8th, and 16th overtones, if & = 142.1 MeV. However, as

it was mentioned earlier, the overtone frequencies increase with
compactness, which implies that the suitable & values for identi-
fying the observed QPOs should be larger, beyond the accepted
values for & . Therefore, for being in agreement with the range
& = 85.3�135.1 MeV, we will need to consider the neutron star
models with very small and somehow unphysical compactness.
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Appendix A: Magnetic effects on the crustal
torsional oscillations

In this study, we ignored the effects of the magnetic field on
crustal torsional oscillations. The signal reported in Castro-
Tirado et al. (2021), seems to be weaker than that observed in
SGR 1806-20, which was estimated to be  (2�4)⇥1015 G (Co-
laiuda & Kokkotas 2011; Gabler et al. 2018). For smaller mag-
netic field strengths, i.e., B  1015 G, the presence of the mag-
netic field can hardly be imprinted in the oscillation spectra. For
B � 1015 G there is shifting in the torsional oscillation frequen-
cies, and a “continuous” spectrum appears if one considers re-
stricted geometries for the magnetic field (Levin 2007; Colaiuda
et al. 2009; van Hoven & Levin 2011; Colaiuda & Kokkotas
2011; Gabler et al. 2012, 2018) while for mixed poloidal-toroidal
fields the magnetoelastic oscillations spectrum is becoming dis-
crete (Colaiuda & Kokkotas 2012).

The effect of the magnetic field on pure torsional oscillations
has been studied in Sotani et al. (2007). There it was shown that
for a variety of neutron star models and EOS the shift in the
torsional oscillations frequencies obeys the following formula
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where `f
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n is the torsional mode frequency of the n-th overtone
of a non-magnetized neutron star, while `fn is the frequency of
the equivalent magnetized one with the same parameters (M , R,
EOS). B is the strength of the surface magnetic field normal-
ized by Bµ = 4 ⇥ 1015 G. In a most recent calculation, this re-
sult is almost confirmed through two-dimensional analysis with
a poloidal magnetic field (Gabler et al. 2018), where the oscil-
lation frequencies are named as magnetically modified torsional
modes.

In the previous studies (Sotani et al. 2007), the coefficients
`↵n, have been calculated only for n = 0, 1 and their values
vary from 0.3 to 0.5 for EOS NV (Negele & Vautherin 1973)
and 0.4 to 1.5 for EOS DH (Douchin & Haensel 2001). Here
we calculated 2↵n for larger values of n as it is shown in Fig-
ure A.1. The values seem to reach a maximum value of about
2↵n ⇡ 2 � 2.5 for EOS DH and 2↵n ⇡ 0.8 � 1.1 for EOS NV.
Thus the deviation of the magnetized neutron star frequencies
from those of the non-magnetized ones are <⇠ 3.4% for the EOS
NV and <⇠ 7.5% for the EOS DH, if we assume B ⇠ 1015 G.
These values are still within the limits of uncertainty (⇠ 10%)
estimated in Castro-Tirado et al. (2021). For values of the mag-
netic field significantly higher than B ⇠ 1015 G, our approach is
failing.

Appendix B: Can the 836 Hz QPO be the 2nd
overtone?

In the main part of the article, we identified the lowest QPO fre-
quency at 836 Hz as the 1st overtone. In this appendix, we ex-
amine the possibility of identifying the lowest QPO as the 2nd
overtone. In Fig. B.1 we plot the 1st and 2nd overtone of crustal
torsional oscillations for a neutron star model with 1.4M� and
14 km as a function of & . In the same figure we draw the observed
QPO frequency and the aforementioned values for & and &QPO.
It is apparent that the 836 Hz QPO frequency can be identified
as the 2nd overtone. In fact, as it is shown in Fig. B.2, all four
QPOs observed in GRB 200415A can be identified as the 2nd,
5th, 8th, and 16th overtones, if & = 142.1 MeV. However, as

it was mentioned earlier, the overtone frequencies increase with
compactness, which implies that the suitable & values for identi-
fying the observed QPOs should be larger, beyond the accepted
values for & . Therefore, for being in agreement with the range
& = 85.3�135.1 MeV, we will need to consider the neutron star
models with very small and somehow unphysical compactness.
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Very-high-frequency oscillations in the main 
peak of a magnetar giant flare

A. J. Castro-Tirado1,2, N. Østgaard3ಞᅒ, E. Göۜüş4ಞᅒ, C. Sánchez-Gil5, J. Pascual-Granado1, 
V. Reglero6,7, A. Mezentsev3ಞᅒ, M. Gabler6ಞᅒ, M. Marisaldi3,8ಞᅒ, T. Neubert9, 
C. Budtz-Jørgensen9, A. Lindanger3, D. Sarria3, I. Kuvvetli9, P. Cerdá-Durán6, 
J. Navarro-González7, J. A. Font6,10, B.-B. Zhang11,12,13, N. Lund9, C. A. Oxborrow9, S. Brandt9, 
M. D. Caballero-García1, I. M. Carrasco-García14, A. Castellón2,15, M. A. Castro Tirado1,16, 
F. Christiansen9, C. J. Eyles7, E. Fernández-García1, G. Genov3, S. Guziy17,18, Y.-D. Hu1,19, 
A. Nicuesa Guelbenzu20, S. B. Pandey21, Z.-K. Peng11,12, C. Pérez del Pulgar2, A. J. Reina Terol2, 
E. Rodríguez1, R. Sánchez-Ramírez22, T. Sun1,23,24, K. Ullaland3 & S. Yang3

Magnetars are strongly magnetized, isolated neutron stars1–3 with magnetic fields  
up to around 1015 gauss, luminosities of approximately 1031–1036 ergs per second  
and rotation periods of about 0.3–12.0 s. Very energetic giant flares from galactic 
magnetars (peak luminosities of 1044–1047 ergs per second, lasting approximately 0.1 s) 
have been detected in hard X-rays and soft γ-rays4, and only one has been detected 
from outside our galaxy5. During such giant flares, quasi-periodic oscillations (QPOs) 
with low (less than 150 hertz) and high (greater than 500 hertz) frequencies have been 
observed6–9, but their statistical significance has been questioned10. High-frequency 
QPOs have been seen only during the tail phase of the flare9. Here we report the 
observation of two broad QPOs at approximately 2,132 hertz and 4,250 hertz in  
the main peak of a giant γ-ray flare11 in the direction of the NGC 253 galaxy12–17, 
disappearing after 3.5 milliseconds. The flare was detected on 15 April 2020 by the 
Atmosphere–Space Interactions Monitor instrument18,19 aboard the International 
Space Station, which was the only instrument that recorded the main burst phase  
(0.8–3.2 milliseconds) in the full energy range (50 × 103 to 40 × 106 electronvolts) 
without suffering from saturation effects such as deadtime and pile-up. Along with 
sudden spectral variations, these extremely high-frequency oscillations in the burst 
peak are a crucial component that will aid our understanding of magnetar giant flares.

We report here the detection11 of a new giant flare (initially dubbed 
GRB 200415) with the Atmosphere–Space Interactions Monitor 
(ASIM) aboard the International Space Station (ISS) on 15 April 2020 
at 08:48:05.56 (±0.03) UT. With the ASIM Modular X- and Gamma-ray 
Sensor (MXGS) instrument18,19, we recorded data for 2 s centred around 
the burst. The two independent detectors of MXGS, covering energies 
between 50–400 keV (low-energy detector, LED) and 300 keV to 40 MeV 
(high-energy detector, HED), did not suffer from saturation effects 
(deadtime, pile-up) and recorded for the first time the fine structure 
of the main burst phase (0.8–3.2 ms) of a magnetar in this entire energy 

range (Fig. 1, Extended Data Fig. 2). Owing to the large effective area of 
ASIM, 1-µs time resolution and large energy range, we have performed 
both a detailed time analysis and a spectral analysis of the main phases 
of the giant flare. We are able to resolve the complex temporal structure 
prior to the absolute peak emission, consisting of six distinct intensity 
peaks during the first 3.2 ms, this flare being the first one for which we 
have seen multiple peaks prior to the maximum (see Fig. 1). During 
the approximately 160-ms duration of the giant flare, around 1046 erg 
isotropic equivalent energy was released, roughly the energy the Sun 
radiates in about 100,000 yr.
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around 1 MeV, because in very strong magnetic fields processes, such as 
one-photon pair creation and photon splitting, the energy of photons 
is limited to roughly 2mec2, where me is the mass of an electron.

An alternative explanation of the timing features is based on the prox-
imity of the QPO candidate at f1 = 2,132 Hz to one of the high-frequency 
QPOs observed in the tail of SGR 1806-20 with f = 1,840 Hz (ref. 9).  
The high-frequency QPOs in magnetars are commonly interpreted as 
radial overtones of the fundamental (magneto-)elastic oscillations 
with one or more nodes in the crust, which will be preferably excited 
during the flare28. Depending on how exactly the instability in the mag-
netosphere is triggered, there may be strong perturbations in the crust 
of the neutron star which should naturally excite oscillations. Follow-
ing this interpretation, the second strong feature at f2 ≈ 4,250 Hz may 
then be related to an even higher overtone. Within this interpretation 

f1 can be considered as an upper estimate on the purely shear mode 
with two (or three) nodes in the crust (see Methods section ‘QPO 
theoretical implications’). This interpretation is also consistent with 
theoretical expectations and the constraints29 that were obtained 
from the QPOs of SGR 1806-20. However, the sudden disappearance 
of the QPOs after approximately 3.5 ms and the evolution of energy 
spectra slightly favour our first model, but do not exclude the presence  
of stellar oscillations.
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Fig. 3 | Periodogram and fits for quasi-periodicities search for the time 
interval 0–5 ms. a, Periodograms for ASIM-LED (50–400 keV; red) and Swift/
BAT GUANO (15–150 keV; black) observations. The interval 0–200 ms is used for 
both periodograms. ASIM time resolution is 50 µs (10-kHz upper frequency) and 
Swift/BAT time resolution is 100 µs (5-kHz upper frequency). The blue horizontal 
line is the white noise level. The power spectral densities show broad signals after 
700 Hz, providing independent confirmation that the f1 = 2,132 Hz QPO 
determined from the ASIM-LED data is genuine. b, Dynamic power contours  
(in red) resulting from the Z2 search in the 1,800–2,400 Hz frequency range, 
along with the LED light curve with 50-µs time resolution. The inset is the 
expanded view of the Z2 contours corresponding to the 99% (innermost),  
95% (middle) and 90% (outermost) levels of peak Z2 power centred at 2,132 Hz 
(Extended Data Table 3). For comparison the frequency found by the PSD analysis 
at 2,156 ± 45 Hz (the frequency and its uncertainty) is shown by dashed and 
dotted horizontal lines (Extended Data Table 2, time interval 0–10 ms).
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Extended Data Table 3 | Z2 search results and corresponding chance probabilities

aThe lower and upper bounds here mark the 95% confidence interval. The other bounds are the 99% confidence levels.
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giant gamma-ray flare (GRB 200415A) in the direction 
of the NGC 253 galaxy, disappearing after 3.5 msec, on 15/4/2020.
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Constrains on M & R 

• See in Session D08: Minisymposium: Solid State Physics in Neutron 
Stars: Crystallography and Superfluidity on Nov. 29th
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Resonant shattering and 
shear/interface modes
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Figure 3. Schematic of the resonant shattering process. The gravitational
potential of the system is the ultimate source of the energy powering the
resonant flare. During close passage, or at resonance for circular orbits, tidal
resonance transfers energy from the orbit (A) to the i-mode (B) at a rate
!1050 erg s−1. The i-mode grows quickly until the maximum strain at the
base of the crust exceeds the breaking strain at mode energy ∼1047 erg. A
fracture occurs, releasing ∼1043 erg of low-frequency seismic energy (C) per
fracture, however, the mode continues to be driven by the resonance. As more
fractures occur, more energy is deposited into seismic energy in the crust.
When the total seismic energy in the NS crust exceeds the elastic limit of the
curst Eelastic ∼ 1046 erg, the crust shatters, scattering the mode energy and
elastic energy to high-frequency oscillations (D). High-frequency oscillations
can couple strongly to the magnetic field (Blaes et al. 1989; Thompson & Blaes
1998) by strongly vibrating their footprints (E). Strong perturbations of the
magnetic field at the neutron star surface drive strong electric fields, which can
accelerate charged particles, triggering pair production and a relativistic fireball
with luminosity 1047–1048 erg s−1.
(A color version of this figure is available in the online journal.)

are expected to be up to ∼1047–1048 erg s−1 (Tsang et al. 2012)
if the precursor flare timescales are assumed.

Troja et al. (2010) found precursors occurring in 3 of the 49
soft gamma repeaters analyzed, implying that not every binary
merger should result in a detectable shattering flare. We note that
the extraction of seismic energy from the crust by the magnetic
field is limited by the strength of the magnetic field at the surface
of the NS. The maximum luminosity that can be extracted from
the crust by the magnetic field can be estimated by

Lmax =
∫

surf
(v × B) × B · d A

∼ 1047erg s−1(v/c)(Bsurf/1013G)2(R/10 km)2, (9)

where v is the maximum velocity of the perturbation to the
field line, R is the NS radius, and Bsurf is the local surface
field strength, which can be significantly higher than the large
scale dipole field. Thus, only shattering flares from NSs with
sufficiently strong surface fields can be detected.

4. ELECTROMAGNETIC COUNTERPARTS TO
GRAVITATIONAL WAVE BURSTS

To calculate the expected GW S/N due to parabolic encoun-
ters, we follow the procedure outlined in Kocsis et al. (2006).
The strain caused by a GW burst due to a parabolic encounter
is given by (Flanagan & Hughes 1998)

h(f ) =
√

3
2π

G1/2

c3/2

1 + z

dL

1
f

√
dE

df
[(1 + z)f ], (10)

where z is the redshift, dL is the luminosity distance, and dE/df
is the total GW energy emitted by encounter per unit frequency,
which is given for a parabolic (e = 1) encounter in the non-
relativistic limit by Equation (46) from Turner (1977). The S/N
for a sky- and orientation-averaged signal on a single detector
is given by (Dalal et al. 2006; Nissanke et al. 2010)

S/N = 8
5

√∫ ∞

0

|h(f )|2
Sn(f )2

df , (11)

where Sn(f ) is the spectral noise density for a given detector. In
Figures 1 and 2, the S/N is shown for the NS–NS and BH–NS
encounters assuming a single encounter at 50 Mpc (z ≃ 0.011)
for advanced LIGO, with spectral noise density given by Harry
et al. (2010).

Blind detection (S/N ! 6 coincident at each detector; see,
e.g., Aasi et al. 2013) of a single GW burst from a NS close
encounter would be extremely challenging at reasonable dis-
tances, with fairly low S/N even for close passages, in particular
for NS–NS encounters. Using X-ray or gamma-ray detections of
resonant shattering flares as electromagnetic counterparts, trig-
gered GW searches could be performed, significantly lowering
the S/N threshold for GW burst detection (Kochanek & Piran
1993; Nissanke et al. 2010; Kelley et al. 2013; Dietz et al. 2013).
Networks of detectors can also be used to enhance burst detec-
tion through coincident and coherent methods (Schutz 2011;
Nissanke et al. 2013; Aasi et al. 2013).

Kocsis & Levin (2012) also show that repeated GW bursts
from eccentric captures can be combined with the final chirp to
boost the integrated S/N by roughly an order of magnitude, and
would optimistically allow detection of bursts from BH–NS
eccentric captures out to ∼300 Mpc, and NS–NS encounters
to ∼150 Mpc. The pattern of these repeated bursts can be
modeled for given orbital parameters. Resonant shattering flares
can be seen significantly farther than the GW bursts. If they
occur for a given system, then they will happen for sufficiently
close passages, which are also those that contribute the largest
component of the GW burst signal. If repeated flares are seen,
then these could also be used to characterize the orbit and
target a burst search to accumulate S/N over multiple passages.
However, significant changes to the current GW templates may
be necessary to detect eccentric captures and mergers (East et al.
2013; Huerta & Brown 2013).

5. EVENT RATES

Close encounters of NSs with other compact objects are much
more likely to occur in dense stellar environments, such as
globular clusters and galactic nuclei. While it is beyond the
scope of this paper to perform an extremely detailed evaluation
of the event rates for close encounters of compact objects, we
will briefly discuss the event rates for such encounters in both
of these environments and provide updated estimates for some
of the rates in the literature.

5.1. Globular Clusters

Kocsis et al. (2006) calculated the parabolic encounter rate for
compact objects in globular clusters using simplified globular
cluster models, predicting a rate of !1 detection per year
for advanced LIGO in optimistic scenarios. However, their
detection rates are dominated by rare distant events involving
close encounters of !20 M⊙ BHs.

3

Tsang 13



Resonant shattering
• Precursors 1‒10 s prior to the main flare were detected 
with high significance for three SGRBs out of the 49 (Troja+10)
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elastic energy to high-frequency oscillations (D). High-frequency oscillations
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1998) by strongly vibrating their footprints (E). Strong perturbations of the
magnetic field at the neutron star surface drive strong electric fields, which can
accelerate charged particles, triggering pair production and a relativistic fireball
with luminosity 1047–1048 erg s−1.
(A color version of this figure is available in the online journal.)

are expected to be up to ∼1047–1048 erg s−1 (Tsang et al. 2012)
if the precursor flare timescales are assumed.

Troja et al. (2010) found precursors occurring in 3 of the 49
soft gamma repeaters analyzed, implying that not every binary
merger should result in a detectable shattering flare. We note that
the extraction of seismic energy from the crust by the magnetic
field is limited by the strength of the magnetic field at the surface
of the NS. The maximum luminosity that can be extracted from
the crust by the magnetic field can be estimated by

Lmax =
∫

surf
(v × B) × B · d A

∼ 1047erg s−1(v/c)(Bsurf/1013G)2(R/10 km)2, (9)

where v is the maximum velocity of the perturbation to the
field line, R is the NS radius, and Bsurf is the local surface
field strength, which can be significantly higher than the large
scale dipole field. Thus, only shattering flares from NSs with
sufficiently strong surface fields can be detected.

4. ELECTROMAGNETIC COUNTERPARTS TO
GRAVITATIONAL WAVE BURSTS

To calculate the expected GW S/N due to parabolic encoun-
ters, we follow the procedure outlined in Kocsis et al. (2006).
The strain caused by a GW burst due to a parabolic encounter
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is the total GW energy emitted by encounter per unit frequency,
which is given for a parabolic (e = 1) encounter in the non-
relativistic limit by Equation (46) from Turner (1977). The S/N
for a sky- and orientation-averaged signal on a single detector
is given by (Dalal et al. 2006; Nissanke et al. 2010)
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where Sn(f ) is the spectral noise density for a given detector. In
Figures 1 and 2, the S/N is shown for the NS–NS and BH–NS
encounters assuming a single encounter at 50 Mpc (z ≃ 0.011)
for advanced LIGO, with spectral noise density given by Harry
et al. (2010).

Blind detection (S/N ! 6 coincident at each detector; see,
e.g., Aasi et al. 2013) of a single GW burst from a NS close
encounter would be extremely challenging at reasonable dis-
tances, with fairly low S/N even for close passages, in particular
for NS–NS encounters. Using X-ray or gamma-ray detections of
resonant shattering flares as electromagnetic counterparts, trig-
gered GW searches could be performed, significantly lowering
the S/N threshold for GW burst detection (Kochanek & Piran
1993; Nissanke et al. 2010; Kelley et al. 2013; Dietz et al. 2013).
Networks of detectors can also be used to enhance burst detec-
tion through coincident and coherent methods (Schutz 2011;
Nissanke et al. 2013; Aasi et al. 2013).

Kocsis & Levin (2012) also show that repeated GW bursts
from eccentric captures can be combined with the final chirp to
boost the integrated S/N by roughly an order of magnitude, and
would optimistically allow detection of bursts from BH–NS
eccentric captures out to ∼300 Mpc, and NS–NS encounters
to ∼150 Mpc. The pattern of these repeated bursts can be
modeled for given orbital parameters. Resonant shattering flares
can be seen significantly farther than the GW bursts. If they
occur for a given system, then they will happen for sufficiently
close passages, which are also those that contribute the largest
component of the GW burst signal. If repeated flares are seen,
then these could also be used to characterize the orbit and
target a burst search to accumulate S/N over multiple passages.
However, significant changes to the current GW templates may
be necessary to detect eccentric captures and mergers (East et al.
2013; Huerta & Brown 2013).

5. EVENT RATES

Close encounters of NSs with other compact objects are much
more likely to occur in dense stellar environments, such as
globular clusters and galactic nuclei. While it is beyond the
scope of this paper to perform an extremely detailed evaluation
of the event rates for close encounters of compact objects, we
will briefly discuss the event rates for such encounters in both
of these environments and provide updated estimates for some
of the rates in the literature.

5.1. Globular Clusters

Kocsis et al. (2006) calculated the parabolic encounter rate for
compact objects in globular clusters using simplified globular
cluster models, predicting a rate of !1 detection per year
for advanced LIGO in optimistic scenarios. However, their
detection rates are dominated by rare distant events involving
close encounters of !20 M⊙ BHs.
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Figure 1. Swift/BAT mask-weighted light curves (15–150 keV) of short GRBs with a possible precursor activity. Dashed vertical lines mark the precursor duration.
The precursors of GRB080702A and GRB050724 are shown in greater detail in the insets. For comparison, we also show the background-subtracted light curves of
Fermi/GBM (090510 and 081024A) and Suzaku/WAM (091117).
(A color version of this figure is available in the online journal.)

the number of false detections (∼96% of false positives).
However, our search was not performed on the whole image,
as the source position was a priori known. This reduces the
number of trials by a factor of ∼3 × 104, i.e., the number of
independent pixels in a BAT image, with respect to a blind
search and the 6.5σ threshold poses therefore a too restrictive
cut.

We determined the probability to have a spurious Nσ de-
tection at a fixed position through Monte Carlo simulations.
An inspection of the detector plane images (DPIs) shows no
noisy detectors during the selected time intervals, and there-
fore statistical fluctuations are the dominant source of noise. By
assuming a Poissonian distribution with a mean count rate of
∼0.12 counts s−1 det−1, we simulated 105 source-free DPIs and

No. 2, 2010 PRECURSORS OF SHORT GRBs 1713

−100 −50 0

0
0.

5
1

C
ts

/s
/d

et
 [1

5−
15

0 
ke

V
]

Time since BAT trigger [s]

050724

(EE)

−110 −105

−0
.1

0
0.

1
0.

2

−100 −50 0

0
0.

1
0.

2

C
ts

/s
/d

et
 [1

5−
15

0 
ke

V
]

Time since BAT trigger [s]

080702A

−142 −140 −138

0
0.

1

0
0.

1
0.

2
0.

3

C
ts

/s
/d

et
 [1

5−
15

0 
ke

V
]

081024A
Swift/BAT

−4 −2 0 2 4

0
50

10
0

C
ts

/s
 [8

−2
60

 k
eV

]

Time since BAT trigger [s]

Fermi/GBM
NaI10+NaI11

0
0.

5
1

C
ts

/s
/d

et
 [1

5−
15

0 
ke

V
]

090510Swift/BAT

−10 −5 0
0

50
0

C
ts

/s
 [8

−2
60

 k
eV

]

Time since BAT trigger [s]

Fermi/GBM
NaI6+NaI7+NaI9

0
0.

5
1

C
ts

/s
/d

et
 [1

5−
15

0 
ke

V
]

091117
Swift/BAT

−2 0 2 4

0
20

00

C
ts

/s

Time since BAT trigger [s]

Suzaku/WAM

Figure 1. Swift/BAT mask-weighted light curves (15–150 keV) of short GRBs with a possible precursor activity. Dashed vertical lines mark the precursor duration.
The precursors of GRB080702A and GRB050724 are shown in greater detail in the insets. For comparison, we also show the background-subtracted light curves of
Fermi/GBM (090510 and 081024A) and Suzaku/WAM (091117).
(A color version of this figure is available in the online journal.)

the number of false detections (∼96% of false positives).
However, our search was not performed on the whole image,
as the source position was a priori known. This reduces the
number of trials by a factor of ∼3 × 104, i.e., the number of
independent pixels in a BAT image, with respect to a blind
search and the 6.5σ threshold poses therefore a too restrictive
cut.

We determined the probability to have a spurious Nσ de-
tection at a fixed position through Monte Carlo simulations.
An inspection of the detector plane images (DPIs) shows no
noisy detectors during the selected time intervals, and there-
fore statistical fluctuations are the dominant source of noise. By
assuming a Poissonian distribution with a mean count rate of
∼0.12 counts s−1 det−1, we simulated 105 source-free DPIs and
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Behavior of eigenfrequencies

• Frequencies with Δ=0 correspond to the eigenfrequencies
• f- and p1-mode freqs. hardly depend on the crust elasticity
• si-mode freqs. strongly depend on the density of interface(s)
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The concrete system of equation is shown in Appendix A
for the elastic region and in Appendix B for the fluid region
(μ ¼ 0), while the boundary and junction conditions, which
should be imposed, are shown in Appendix C [41]. In
practice, the perturbation equations are integrated outward
from the center and inward from the stellar surface with the
appropriate boundary conditions, where the corresponding
solutions are named as ðyin1 ; yin2 Þ and ðyout1 ; yout2 Þ, respec-
tively. Then, the eigenfrequencies are determined via the
condition of

Δ≡ yin1 y
out
2 − yout1 yin2 ¼ 0 ð20Þ

at some position inside the star, e.g., the boundary at the
crust and envelope. In this study, we especially focus on the
l ¼ 2 modes.

IV. EIGENFREQUENCIES

In order to understand the dependence of eigenfrequen-
cies excited in the neutron stars on the presence of
elasticity, first we consider (i) the neutron star composed
of fully zero-elastic “fluid”; (ii) the stellar model with
elastic phase composed of spherical nuclei, “Sp”; (iii) the
stellar model with elastic phase composed of spherical and
cylindrical nuclei, “Sp+Cy“; and (iv) the “realistic” stellar
model with elastic phase composed of spherical, cylindri-
cal, cylindrical-hole, and spherical-hole nuclei as shown in
Fig. 2. That is, we focus on a specific neutron star model
with 1.4M⊙ and 12.4 km constructed with the EOS with
L ¼ 73.4 MeV, but the shear moduli in some elastic phases
are artificially put to zero except for the realistic stellar
model. In Fig. 3, one can see how the eigenfrequencies
depend on the elastic phases, where the absolute value of
Δ at the boundary between the crust and envelope is shown
as a function of the frequency, i.e., the eigenfrequencies

correspond to the frequency where absðΔÞ ¼ 0. The
resultant eigenfrequencies excited in the stellar models
shown in Fig. 3 are listed in Table II.
In the left panel of Fig. 3, we show the results for the

“fluid” model with the solid line and for the “Sp” model
with the dotted line. From this figure, one can observe the
excitation of the shear (si-) and interface (ii-) modes
together with the fundamental (f-) and pressure (pi-)
modes in the “Sp” model (see also the right panel), where
f- and p1-mode frequencies excited in the “Sp” model are
almost the same as those excited in the “fluid” model. That
is, the presence of the elasticity hardly affects the acoustic
oscillations. In the middle panel, we show the results for the
“Sp” model with the dotted line and for the “Spþ Cy”
model with the solid line. From this result, one can observe
that the si-mode frequencies in the “Spþ Cy” model
become smaller than those in the “Sp” model. In the right
panel, we show an enlarged view of the middle panel,
where we also show the results for the “realistic” model
(SpCyþ CHSH). From the right panel, one can observe
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FIG. 3. The absolute values of Δ given by Eq. (20) are shown as a function of the frequencies. The eigenfrequencies correspond to the
specific frequencies, with which the absolute value of Δ at some position inside the star becomes zero. In the left pane, we show the
results for the stellar model composed of only the fluid with the solid line and that including a nonzero elastic region composed of
spherical nuclei with the dotted line. In the middle panel, we show the results for the stellar model including a nonzero elastic region
composed of spherical nuclei with the dotted line and that including a nonzero elastic region composed of spherical and cylindrical
nuclei with the solid line. The right panel is just an enlarged view of the middle panel, where we also show the result for the “realistic”
stellar model with the dashed line. The neutron star model is the same as in Fig. 2.

TABLE II. Eigenfrequencies excited in the stellar models
shown in Fig. 3 in the unit of kHz.

Fluid Sp SpCy SpCy+CHSH

f 2.237 2.237 2.237 2.237
p1 6.075 6.074 6.074 6.074
i1 % % % 0.039 0.036 0.036
i2 % % % 0.030 0.030 0.030
i3 % % % % % % % % % 0.027
s1 % % % 0.730 0.668 0.668
s2 % % % 1.201 1.111 1.111
s3 % % % 1.552 1.477 1.477
s4 % % % 1.877 1.752 1.752
s5 % % % 2.316 2.139 2.139
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Eigenfunctions (i/s-modes)
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of the top panel is shown in the bottom panel. One can observe that the amplitude of the i3-mode becomes dominant
inside the region composed of the cylindrical-hole and spherical-hole nuclei. We also find that only three interface
modes are excited in the “realistic” model, even though four interfaces exist in the “realistic” model, i.e., Sp/envelope,
Slab/Cy, CH/Slab, and core/SH. This may come from the fact that the region composed of cylindrical-hole and
spherical-hole nuclei is too narrow. In fact, if the elastic region becomes too narrow, the number of excited interface
modes can become less than the number of interfaces, as shown in Appendix D. Furthermore, if one considers the
neutron star model using the EOS with L = 42.6 MeV, where the ratio of the thickness of the elastic region composed
of cylindrical-hole and spherical-hole nuclei to the stellar radius is relatively larger than that considered in Fig. 3 as
shown in Table I, one can observe the i4-mode together with the i3-mode by introducing the elastic region composed
of cylindrical-hole and spherical-hole nuclei (see Sec. V for details).

The si-modes are also the eigenmodes excited due to the presence of elasticity. Unlike the ii-modes, the si-modes
are basically confined inside the elastic region. In Fig. 6, we show the amplitude of the eigenfunction, W and V , for
the s1-mode (s2-mode) in the top (bottom) panel. From this figure, one can see that W is continuous even at the
boundaries between the anelastic and elastic regions owing to the junction condition (see in Appendix C), while V
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Uncertainties in core EOS
• To see the dependence on the EOS stiffness in a higher-density region,
we adopt not only the original OI-EOSs but also the one-parameter EOS, 
such as
for a lower-density region (           ): original OI-EOSs
for a higher-density region (           ): 

• α is associated with the sound velocity as
• we consider in the range of  
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Next, we examine how the frequencies of the i- and s-modes depend on the neutron star properties. In particular,
since the nuclear properties in the core region (or in a higher-density region) are quite uncertain, we examine the
frequencies of the i- and s-modes by changing the stiffness of the EOS in a higher-density region. For this purpose,
in addition to the original OI-EOSs listed in Table I, we simply consider that the EOS for a lower density region of
ε ≤ εt, i.e., OI-EOSs, is connected to the one-parameter EOS characterized by α for a higher density region of ε ≥ εt,
i.e.,

p = α(ε− εt) + pt, (23)

where pt is given from the EOS for a lower-density region with ε = εt and α is associated with the sound velocity, cs,
as c2s = α [58]. In this study, we especially focus on the value of α in the range of 1/3 ≤ α ≤ 1.

In practice, if one calculates the frequencies of i- and s-mode with this type of EOS, the frequencies depend on the
value of α. However, we find that the i-mode frequencies multiplied by the stellar mass, fM , can be expressed as a
function of the stellar compactness almost independently of the value of α (or the stiffness in a higher density region
inside the neutron stars), only depending on the stiffness of the curst EOS, as shown in Fig. 9. In this figure, the
solid lines are the fitting lines given by the functional form as

fM (kHz/M⊙) = a0 + a1(x/0.1) + a2(x/0.1)
2, (24)

where x denotes the stellar compactness, M/R, and a0, a1, and a2 are adjusted coefficients.
In a similar way, we also find that the s-mode frequencies multiplied by the stellar radius, fR, can be expressed as a

function of the stellar compactness almost independently of the value of α, which depends only on the crust stiffness,
as shown in Fig. 10. In this figure, the solid lines are fitting lines given by the functional form as

fR (kHz km) = b0 + b1(x/0.1), (25)

where x denotes the stellar compactness, M/R, and b0 and b1 are adjusted coefficients. Now, we find two different
types of fitting formulae for the i- and s-mode frequencies. Thus, if one would simultaneously observe the i- and
s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the
terrestrial experiments.

VI. CONCLUSION

We carefully examine the frequencies of the interface and shear oscillations, which are excited due to the presence of
the elasticity, by considering the neutron star models with the pasta structures, i.e., cylindrical, slab-like, cylindrical-
hole, and spherical-hole nuclei at the basis of the crust. We find that the shear mode frequencies excited in a realistic
stellar model are basically the same as those in the neutron star model composed of only spherical and cylindrical
nuclei, if we focus only on the frequency range up to a few kHz. This is because the shear modes are only excited
inside the elastic region, which leads to the feature that the frequencies are inversely proportional to the thickness
of the elastic region, and the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei is
extremely thin. On the other hand, the interface mode frequencies strongly depend on the elastic region composed
of cylindrical-hole and spherical-hole nuclei. We find that the number of the interface mode frequencies depends on
the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei (or the value of the slop
parameter L). In addition, we find the empirical relations for the interface mode frequencies multiplied by the stellar
mass and for the shear mode frequencies multiplied by the stellar radius as a function of the stellar compactness,
which is almost independent of the stiffness in a higher-density region inside the neutron stars, once one selects the
crust equation of state. Via our empirical relations, if one would simultaneously observe the interface and shear mode
oscillations from a neutron star, one might extract the stellar mass and radius with the help of the constraint on the
crust stiffness obtained from the terrestrial experiments.
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value of α. However, we find that the i-mode frequencies multiplied by the stellar mass, fM , can be expressed as a
function of the stellar compactness almost independently of the value of α (or the stiffness in a higher density region
inside the neutron stars), only depending on the stiffness of the curst EOS, as shown in Fig. 9. In this figure, the
solid lines are the fitting lines given by the functional form as

fM (kHz/M⊙) = a0 + a1(x/0.1) + a2(x/0.1)
2, (24)

where x denotes the stellar compactness, M/R, and a0, a1, and a2 are adjusted coefficients.
In a similar way, we also find that the s-mode frequencies multiplied by the stellar radius, fR, can be expressed as a

function of the stellar compactness almost independently of the value of α, which depends only on the crust stiffness,
as shown in Fig. 10. In this figure, the solid lines are fitting lines given by the functional form as

fR (kHz km) = b0 + b1(x/0.1), (25)

where x denotes the stellar compactness, M/R, and b0 and b1 are adjusted coefficients. Now, we find two different
types of fitting formulae for the i- and s-mode frequencies. Thus, if one would simultaneously observe the i- and
s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the
terrestrial experiments.

VI. CONCLUSION

We carefully examine the frequencies of the interface and shear oscillations, which are excited due to the presence of
the elasticity, by considering the neutron star models with the pasta structures, i.e., cylindrical, slab-like, cylindrical-
hole, and spherical-hole nuclei at the basis of the crust. We find that the shear mode frequencies excited in a realistic
stellar model are basically the same as those in the neutron star model composed of only spherical and cylindrical
nuclei, if we focus only on the frequency range up to a few kHz. This is because the shear modes are only excited
inside the elastic region, which leads to the feature that the frequencies are inversely proportional to the thickness
of the elastic region, and the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei is
extremely thin. On the other hand, the interface mode frequencies strongly depend on the elastic region composed
of cylindrical-hole and spherical-hole nuclei. We find that the number of the interface mode frequencies depends on
the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei (or the value of the slop
parameter L). In addition, we find the empirical relations for the interface mode frequencies multiplied by the stellar
mass and for the shear mode frequencies multiplied by the stellar radius as a function of the stellar compactness,
which is almost independent of the stiffness in a higher-density region inside the neutron stars, once one selects the
crust equation of state. Via our empirical relations, if one would simultaneously observe the interface and shear mode
oscillations from a neutron star, one might extract the stellar mass and radius with the help of the constraint on the
crust stiffness obtained from the terrestrial experiments.
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Next, we examine how the frequencies of the i- and s-modes depend on the neutron star properties. In particular,
since the nuclear properties in the core region (or in a higher-density region) are quite uncertain, we examine the
frequencies of the i- and s-modes by changing the stiffness of the EOS in a higher-density region. For this purpose,
in addition to the original OI-EOSs listed in Table I, we simply consider that the EOS for a lower density region of
ε ≤ εt, i.e., OI-EOSs, is connected to the one-parameter EOS characterized by α for a higher density region of ε ≥ εt,
i.e.,

p = α(ε− εt) + pt, (23)

where pt is given from the EOS for a lower-density region with ε = εt and α is associated with the sound velocity, cs,
as c2s = α [58]. In this study, we especially focus on the value of α in the range of 1/3 ≤ α ≤ 1.

In practice, if one calculates the frequencies of i- and s-mode with this type of EOS, the frequencies depend on the
value of α. However, we find that the i-mode frequencies multiplied by the stellar mass, fM , can be expressed as a
function of the stellar compactness almost independently of the value of α (or the stiffness in a higher density region
inside the neutron stars), only depending on the stiffness of the curst EOS, as shown in Fig. 9. In this figure, the
solid lines are the fitting lines given by the functional form as

fM (kHz/M⊙) = a0 + a1(x/0.1) + a2(x/0.1)
2, (24)

where x denotes the stellar compactness, M/R, and a0, a1, and a2 are adjusted coefficients.
In a similar way, we also find that the s-mode frequencies multiplied by the stellar radius, fR, can be expressed as a

function of the stellar compactness almost independently of the value of α, which depends only on the crust stiffness,
as shown in Fig. 10. In this figure, the solid lines are fitting lines given by the functional form as

fR (kHz km) = b0 + b1(x/0.1), (25)

where x denotes the stellar compactness, M/R, and b0 and b1 are adjusted coefficients. Now, we find two different
types of fitting formulae for the i- and s-mode frequencies. Thus, if one would simultaneously observe the i- and
s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the
terrestrial experiments.

VI. CONCLUSION

We carefully examine the frequencies of the interface and shear oscillations, which are excited due to the presence of
the elasticity, by considering the neutron star models with the pasta structures, i.e., cylindrical, slab-like, cylindrical-
hole, and spherical-hole nuclei at the basis of the crust. We find that the shear mode frequencies excited in a realistic
stellar model are basically the same as those in the neutron star model composed of only spherical and cylindrical
nuclei, if we focus only on the frequency range up to a few kHz. This is because the shear modes are only excited
inside the elastic region, which leads to the feature that the frequencies are inversely proportional to the thickness
of the elastic region, and the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei is
extremely thin. On the other hand, the interface mode frequencies strongly depend on the elastic region composed
of cylindrical-hole and spherical-hole nuclei. We find that the number of the interface mode frequencies depends on
the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei (or the value of the slop
parameter L). In addition, we find the empirical relations for the interface mode frequencies multiplied by the stellar
mass and for the shear mode frequencies multiplied by the stellar radius as a function of the stellar compactness,
which is almost independent of the stiffness in a higher-density region inside the neutron stars, once one selects the
crust equation of state. Via our empirical relations, if one would simultaneously observe the interface and shear mode
oscillations from a neutron star, one might extract the stellar mass and radius with the help of the constraint on the
crust stiffness obtained from the terrestrial experiments.
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Next, we examine how the frequencies of the i- and s-modes depend on the neutron star properties. In particular,
since the nuclear properties in the core region (or in a higher-density region) are quite uncertain, we examine the
frequencies of the i- and s-modes by changing the stiffness of the EOS in a higher-density region. For this purpose,
in addition to the original OI-EOSs listed in Table I, we simply consider that the EOS for a lower density region of
ε ≤ εt, i.e., OI-EOSs, is connected to the one-parameter EOS characterized by α for a higher density region of ε ≥ εt,
i.e.,

p = α(ε− εt) + pt, (23)

where pt is given from the EOS for a lower-density region with ε = εt and α is associated with the sound velocity, cs,
as c2s = α [58]. In this study, we especially focus on the value of α in the range of 1/3 ≤ α ≤ 1.

In practice, if one calculates the frequencies of i- and s-mode with this type of EOS, the frequencies depend on the
value of α. However, we find that the i-mode frequencies multiplied by the stellar mass, fM , can be expressed as a
function of the stellar compactness almost independently of the value of α (or the stiffness in a higher density region
inside the neutron stars), only depending on the stiffness of the curst EOS, as shown in Fig. 9. In this figure, the
solid lines are the fitting lines given by the functional form as

fM (kHz/M⊙) = a0 + a1(x/0.1) + a2(x/0.1)
2, (24)

where x denotes the stellar compactness, M/R, and a0, a1, and a2 are adjusted coefficients.
In a similar way, we also find that the s-mode frequencies multiplied by the stellar radius, fR, can be expressed as a

function of the stellar compactness almost independently of the value of α, which depends only on the crust stiffness,
as shown in Fig. 10. In this figure, the solid lines are fitting lines given by the functional form as

fR (kHz km) = b0 + b1(x/0.1), (25)

where x denotes the stellar compactness, M/R, and b0 and b1 are adjusted coefficients. Now, we find two different
types of fitting formulae for the i- and s-mode frequencies. Thus, if one would simultaneously observe the i- and
s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the
terrestrial experiments.

VI. CONCLUSION

We carefully examine the frequencies of the interface and shear oscillations, which are excited due to the presence of
the elasticity, by considering the neutron star models with the pasta structures, i.e., cylindrical, slab-like, cylindrical-
hole, and spherical-hole nuclei at the basis of the crust. We find that the shear mode frequencies excited in a realistic
stellar model are basically the same as those in the neutron star model composed of only spherical and cylindrical
nuclei, if we focus only on the frequency range up to a few kHz. This is because the shear modes are only excited
inside the elastic region, which leads to the feature that the frequencies are inversely proportional to the thickness
of the elastic region, and the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei is
extremely thin. On the other hand, the interface mode frequencies strongly depend on the elastic region composed
of cylindrical-hole and spherical-hole nuclei. We find that the number of the interface mode frequencies depends on
the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei (or the value of the slop
parameter L). In addition, we find the empirical relations for the interface mode frequencies multiplied by the stellar
mass and for the shear mode frequencies multiplied by the stellar radius as a function of the stellar compactness,
which is almost independent of the stiffness in a higher-density region inside the neutron stars, once one selects the
crust equation of state. Via our empirical relations, if one would simultaneously observe the interface and shear mode
oscillations from a neutron star, one might extract the stellar mass and radius with the help of the constraint on the
crust stiffness obtained from the terrestrial experiments.
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Next, we examine how the frequencies of the i- and s-modes depend on the neutron star properties. In particular,
since the nuclear properties in the core region (or in a higher-density region) are quite uncertain, we examine the
frequencies of the i- and s-modes by changing the stiffness of the EOS in a higher-density region. For this purpose,
in addition to the original OI-EOSs listed in Table I, we simply consider that the EOS for a lower density region of
ε ≤ εt, i.e., OI-EOSs, is connected to the one-parameter EOS characterized by α for a higher density region of ε ≥ εt,
i.e.,

p = α(ε− εt) + pt, (23)

where pt is given from the EOS for a lower-density region with ε = εt and α is associated with the sound velocity, cs,
as c2s = α [58]. In this study, we especially focus on the value of α in the range of 1/3 ≤ α ≤ 1.

In practice, if one calculates the frequencies of i- and s-mode with this type of EOS, the frequencies depend on the
value of α. However, we find that the i-mode frequencies multiplied by the stellar mass, fM , can be expressed as a
function of the stellar compactness almost independently of the value of α (or the stiffness in a higher density region
inside the neutron stars), only depending on the stiffness of the curst EOS, as shown in Fig. 9. In this figure, the
solid lines are the fitting lines given by the functional form as

fM (kHz/M⊙) = a0 + a1(x/0.1) + a2(x/0.1)
2, (24)

where x denotes the stellar compactness, M/R, and a0, a1, and a2 are adjusted coefficients.
In a similar way, we also find that the s-mode frequencies multiplied by the stellar radius, fR, can be expressed as a

function of the stellar compactness almost independently of the value of α, which depends only on the crust stiffness,
as shown in Fig. 10. In this figure, the solid lines are fitting lines given by the functional form as

fR (kHz km) = b0 + b1(x/0.1), (25)

where x denotes the stellar compactness, M/R, and b0 and b1 are adjusted coefficients. Now, we find two different
types of fitting formulae for the i- and s-mode frequencies. Thus, if one would simultaneously observe the i- and
s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the
terrestrial experiments.

VI. CONCLUSION

We carefully examine the frequencies of the interface and shear oscillations, which are excited due to the presence of
the elasticity, by considering the neutron star models with the pasta structures, i.e., cylindrical, slab-like, cylindrical-
hole, and spherical-hole nuclei at the basis of the crust. We find that the shear mode frequencies excited in a realistic
stellar model are basically the same as those in the neutron star model composed of only spherical and cylindrical
nuclei, if we focus only on the frequency range up to a few kHz. This is because the shear modes are only excited
inside the elastic region, which leads to the feature that the frequencies are inversely proportional to the thickness
of the elastic region, and the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei is
extremely thin. On the other hand, the interface mode frequencies strongly depend on the elastic region composed
of cylindrical-hole and spherical-hole nuclei. We find that the number of the interface mode frequencies depends on
the thickness of the elastic region composed of cylindrical-hole and spherical-hole nuclei (or the value of the slop
parameter L). In addition, we find the empirical relations for the interface mode frequencies multiplied by the stellar
mass and for the shear mode frequencies multiplied by the stellar radius as a function of the stellar compactness,
which is almost independent of the stiffness in a higher-density region inside the neutron stars, once one selects the
crust equation of state. Via our empirical relations, if one would simultaneously observe the interface and shear mode
oscillations from a neutron star, one might extract the stellar mass and radius with the help of the constraint on the
crust stiffness obtained from the terrestrial experiments.
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• we find two different types of fitting formulae for the i- and s-mode freqs.
• depend only on the crust stiffness (crust EOS) 

• If one would simultaneously observe the i- and s-modes, 
one might extract the stellar mass and radius with the help of the constraint 
on the crust stiffness from the terrestrial experiments.

• Moreover, it may affect the binary evolution 
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Conclusion

• Asteroseismology is a powerful technique for extracting the NS properties

• In this talk, we focus on 
• supernova gravitational waves
• magnetar QPOs
• resonant shuttering in binary NSs

• We are looking forward to getting new signals from NSs, which may help us 
to understand NS physics well by using the asteroseismology approach.
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