Continuous emission

Astroseismology of NSs

Joint RIKEN/N3AS Workshop on Multi-Messenger Astrophysics

Hajime SOTANI (RIKEN ABBL/iTHMES)

Asteroseismology

- how to know the best time to eat a watermelon?
 - inside can not be checked before cutting
- "empirical rule"
 - to check the best time, knock on a watermelon
 - high frequency "KIN-KIN"; too young
 - "BAN-BAN"; best time!
 - low frequency "BON-BON"; too old
 - may need many years to get this ability

- asteroseismology
- linear perturbation analysis is considered in this talk.

NS oscillation modes

- axial parity
 - spacetime (w-) modes
 - torsional (t-) modes
 - rotational (r-) modes
 - magnetic modes
- polar parity
 - fundamental (f-) modes
 - pressure (p-) modes
 - gravity (g-) modes
 - spacetime (w-) modes
 - shear (s-) modes
 - interface (i-) modes
 - inertial (i-) modes
 - magnetic modes

under the angular transformation $(\theta \rightarrow \pi - \theta, \phi \rightarrow \pi + \phi),$ a spherical harmonic function with index ℓ transforms as $(-1)^{\ell+1}$: axial parity / $(-1)^{\ell}$: polar parity

NS oscillation modes

- axial parity
 - spacetime (w-) modes
 - torsional (t-) modes
 - rotational (r-) modes
 - magnetic modes
- polar parity
 - <u>fundamental (f-) modes</u>
 - pressure (p-) modes
 - gravity (g-) modes
 - spacetime (w-) modes
 - shear (s-) modes
 - interface (i-) modes
 - inertial (i-) modes
 - magnetic modes

under the angular transformation $(\theta \rightarrow \pi - \theta, \phi \rightarrow \pi + \phi),$ a spherical harmonic function with index ℓ transforms as $(-1)^{\ell+1}$: axial parity / $(-1)^{\ell}$: polar parity

Universal (empirical) relations

 To extract the physical properties from observables, a universal relation (independently of the EOS) must be important

Contents

- supernova gravitational waves
- magnetar QPOs and torsional oscillations
- resonant shattering and shear/interface modes

Supernova gravitational waves

Dawn of GW astronomy

- GWs from the compact binary merger have been detected.
 - GWs become a new tool for extracting astronomical information.

• The next candidate must be a supernova explosion.

Next candidate of GW sources

- core-collapse supernovae
 - compared to the binary merger, the system is almost spherically symmetric
 - less energy of gravitational waves
 - many numerical simulations show the existence of GW signals
 - SN GWs depend on the SN models, such as progenitor mass and EOS
 - how to extract the astronomical information from the GW observations?
 - what is the origin of the SN GWs?

Comparison with GW signals in numerical simulation

- GW signals correspond to g_1 -mode in early phase and f-mode after avoided crossing.
 - similar correspondence has been seen even in various SN models

Joint RIKEN/N3AS Workshop on Multi-Messenger Astrophysics @HAWAII2023

What can we learn from SN GWs

- GW freqs. evolution strongly depend on SN models, but…
- well expressed with average density or surface gravity of PNS

· SFHo

··· TGLD

TGTF

1.5

0.9

0.6

0.3

0.05

f(kHz)

Joint RIKEN/N3AS Workshop on Multi-Messenger Astrophysics @HAWAII2023

Signal of the g_1 -mode oscillations?

Joint RIKEN/N3AS Workshop on Multi-Messenger Astrophysics @HAWAII2023

Strong correlations M/R² & M/R³

Unlike cold NSs, we find the strong correlations in PNS properties

Magnetar QPOs and torsional oscillations

Joint RIKEN/N3AS Workshop on Multi-Messenger Astrophysics @HAWAII2023

Magnetar QPOs

- Quasi-periodic oscillations (QPOs) in the afterglow of giant flares from soft-gamma repeaters (SGRs) (Barat+83, Israel+05, Strohmayer & Watts 05, Watts & Strohmayer 06)
 - SGR 0526-66 (5th/3/1979) : 43 Hz
 - SGR 1900+14 (27th/8/1998) : 28, 54, 84, 155 Hz
 - SGR 1806-20 (27th/12/2004) : 18, 26, 30, 92.5, 150, 626.5, 1837 Hz
 - additional QPO in SGR 1806-20 : 57 Hz (Huppenkothen+14)
 - additional QPOs : 51.4, 97.3, 157 Hz (Miller+18)

- Crustal torsional oscillation ?
- Magnetic oscillations ?

Elasticity in NS crust

15

 observed freq. are well identified with crustal torsional oscillations, which tell us the constraint on L

Magnetic effects

 the shift in the torsional oscillation freqs. obeys the following formula (HS+2007; Gabler+2018)

$$\frac{\ell f_n}{\ell f_n^{(0)}} \approx \left[1 + \ell \alpha_n \left(\frac{B}{B_\mu} \right)^2 \right]^{1/2} \qquad B_\mu = 4 \times 10^{15} \,\mathrm{G}$$

- for the overtones,
 - for EOS NV $_2\alpha_n \approx 0.8 1.1$
 - for EOS DH $_2\alpha_n \approx 2-2.5$
- Deviation of the magnetized NS freqs. from those of the non-magnetized ones
 - \leq 3.4% for the EOS NV
 - \lesssim 7.5% for the EOS DH,

if we assume $B \approx 10^{15} G$

QPOs are newly found

Article

Very-high-frequency oscillations in the main peak of a magnetar giant flare

https://doi.org/10.1038/s41586-021-04101-1 Received: 17 August 2020 Accepted: 6 October 2021 Published online: 22 December 2021

Check for updates

A. J. Castro-Tirado^{1,2}, N. Østgaard³, E. Göğüş⁴, C. Sánchez-Gil⁵, J. Pascual-Granado¹, V. Reglero^{6,7}, A. Mezentsev³, M. Gabler⁶, M. Marisaldi^{3,8}, T. Neubert⁹, C. Budtz-Jørgensen⁹, A. Lindanger³, D. Sarria³, I. Kuvvetli⁹, P. Cerdá-Durán⁶, J. Navarro-González⁷, J. A. Font⁶¹⁰, B.-B. Zhang^{11,12,13}, N. Lund⁹, C. A. Oxborrow⁹, S. Brandt⁹, M. D. Caballero-García¹, I. M. Carrasco-García¹⁴, A. Castellón^{2,15}, M. A. Castro Tirado^{1,16}, F. Christiansen⁹, C. J. Eyles⁷, E. Fernández-García¹, G. Genov³, S. Guziy^{17,18}, Y.-D. Hu^{1,19}, A. Nicuesa Guelbenzu²⁰, S. B. Pandey²¹, Z.-K. Peng^{11,12}, C. Pérez del Pulgar², A. J. Reina Terol², E. Rodríguez¹, R. Sánchez-Ramírez²², T. Sun^{1,23,24}, K. Ullaland³ & S. Yang³

giant gamma-ray flare (GRB 200415A) in the direction of the NGC 253 galaxy, disappearing after 3.5 msec, on 15/4/2020.

	LED		HED	
Interval (Hz)	Peak Frequency	Chance probability	Peak Frequency	Chance probability
	(Hz)		(Hz)	
500 - 1100	835.9 ^{-84.7} +77.3	1.2 x 10 ⁻⁴	-	-
1100 - 1700	$1443.7^{-68.7}_{+74.8}^{a}$	4.9 x 10 ⁻²	1353.5 ^{-230.7} +217.7	1.2×10^{-12}
1800 - 2400	$2131.7^{-151.0}_{+148.2}$	2.4 x 10 ⁻⁹	$2095.1^{-277.5}_{+180.8}$	5.0 x 10 ⁻⁸
3900 - 4500	$4249.7^{-102.7}_{+116.0}$	1.7 x 10 ⁻⁴	4126.8-71.1+73.0	1.1 x 10 ⁻²

Observed fres. are high

normalized PSD

Leahy 1

- polar type oscillations, such as f, p_i-modes
- overtones of torsional modes

Constrains on M & R

 See in Session D08: Minisymposium: Solid State Physics in Neutron Stars: Crystallography and Superfluidity on <u>Nov. 29th</u>

Resonant shattering and shear/interface modes

Joint RIKEN/N3AS Workshop on Multi-Messenger Astrophysics @HAWAII2023

Resonant shattering

 Precursors 1–10 s prior to the main flare were detected with high significance for three SGRBs out of the 49 (Troja+10)

Troja+10 Joint RIKEN/N3AS Workshop on Multi-Messenger Astrophysics @HAWAII2023

Behavior of eigenfrequencies

- Frequencies with $\Delta = 0$ correspond to the eigenfrequencies
- f- and p_1 -mode freqs. hardly depend on the crust elasticity
- s_i-mode freqs. strongly depend on the density of interface(s)

Eigenfunctions (i/s-modes)

Joint RIKEN/N3AS Workshop on Multi-Messenger Astrophysics @HAWAII2023

Uncertainties in core EOS

 To see the dependence on the EOS stiffness in a higher-density region, we adopt not only the original OI-EOSs but also the one-parameter EOS, such as

for a lower-density region ($\varepsilon \le \varepsilon_t$): original OI-EOSs for a higher-density region ($\varepsilon \ge \varepsilon_t$): $p = \alpha(\varepsilon - \varepsilon_t) + p_t$.

- α is associated with the sound velocity as $c_s^2 = \alpha$
- we consider in the range of $1/3 \le \alpha \le 1$.

crust/core transition density $\simeq (0.3-0.5)n_0$

- we find two different types of fitting formulae for the i- and s-mode freqs.
 - depend only on the crust stiffness (crust EOS)
- If one would simultaneously observe the i- and s-modes, one might extract the stellar mass and radius with the help of the constraint on the crust stiffness from the terrestrial experiments.
- Moreover, it may affect the binary evolution

Conclusion

- Asteroseismology is a powerful technique for extracting the NS properties
- In this talk, we focus on
 - supernova gravitational waves
 - magnetar QPOs
 - resonant shuttering in binary NSs
- We are looking forward to getting new signals from NSs, which may help us to understand NS physics well by using the asteroseismology approach.