JGW-G2315417 Joint RIKEN/N3AS Workshop on Multi-Messenger Astrophysics (Hilton Waikoloa Village, Hawaii)

KAGRA: The Key to Multi-Messenger Astrophysics

Yuta Michimura

LIGO Lab, Caltech <u>yuta@caltech.edu</u> RESCEU, UTokyo <u>michimura@phys.s.u-tokyo.ac.jp</u>

for the KAGRA Collaboration

November 26, 2023

Global Network of GW Detectors

LIGO-Virgo-KAGRA Observing Plan

 Coordinated runs to detect GW signals by multiple detectors

LIGO-Virgo-KAGRA O4 Run Status

- 69 detections so far, by LIGO Hanford & Livingston
- Virgo to be joined in March 2024
- KAGRA briefly joined O4, but currently in planned

commissioning, to be joined again in Spring 2024

O4a interrupts

 O4a interrupts
 on January 16,
 O4b starts
 two months later
 (commissioning break)

LIGO-G2302098

No Multi-Messenger Event Yet!

30°

-30°

0°

- Only Hanford and Livingston operating
- O(100) deg² localization e.g. GW170817 was 31 deg² with Virgo
- 3 or more detectors are necessary for triangulation
- More detectors for
 - Sky localization
 - Sky coverage
 - 3+ detector duty factor

When KAGRA Joins

- BNS sky localization < O(10) deg²
 Also reduces time to
 C. Pankow+, ApJL 854, L25 (2018)
 identify EM/neutrino counterparts, a_{1,2} = 0
 a_{1,2} = 0.05
 a_{1,2} = 0.4
 enabling prompt data taking -5°
- Enables better
 GW polarization
 measurements
 - Hubble constant

(by a few precent by resolving distance & inclination degeneracy)

- Tests of GR

(measure scalar & vector polarizations; # of detectors is # of pols. resolved) H. Takeda+, <u>PRD **98**</u>, 022008 (2018)

KAGRA Project

- Project started in 2010
- Construction completed and signed MoA with LIGO/Virgo in 2019
- 13 countries, 120+ institutes, 400+ collaborators (155 authors)
- Underground and cryogenic

Aug 2019 F2F meeting @ Toyama 7

KAGRA Location

Kamioka, Gifu prefecture, Japan

3 FIL

Mt. Ikenoyama

CLIO

KamLAND Super-Kamiokande

3 km

Office Control room

St alle

KAGRA Tunnel entrance

Google

KAGRA Tunnel

 Laser beam goes back and forth inside two 3 km vacuum tubes

Laser Interferometric GW Detector

Measures differential arm length change from GW

Laser Interferometric GW Detector

Measures differential arm length change from GW

Technologies for Future Detectors

- Underground construction to reduce seismic noise and gravity gradient noise
- Cooling sapphire test masses to ~20 K to reduce thermal noises

KAGRA Sensitivity

O4a target (1-3 Mpc) ~ O4b target (3-10 Mpc) ~

O4a (May 2023)

- Started with LIGO
- May-Jun 2020
- ~250 K
- Power-recycled

Fabry-Perot Michelson interferometer

Commissioning Toward O4a

- Test mass vibration isolation system upgrades
 - fixed mechanical failures
 - improved sensors and actuation
- Scattered light noise mitigation
 - Additional baffles and beam dumps

Commissioning Toward O4b

- Alignment sensing and control improvements

 Wavefront sensing technique
- All the test masses are being cooled down
 - At least below 100 K to reduce thermoelastic noise
 - Takes about a month to cool down
- Higher power laser

Developments Toward O5

- Birefringence of sapphire was found to be larger than expected
 - c-axis and beam axis not well aligned
 - inhomogeneity
- Polishing crystals with lower birefringence

KAGRA Upgrade

- Various upgrade plans are being considered
- Active R&D ongoing for the upgrade
 - Coating
 - Gravity gradient noise subtraction
 - Frequency-dependent squeezing etc...

Ultralight Dark Matter Searches

- Interferometric GW detectors are also sensitive to
 - Scalar dark matter
 - through changes in thickness of mirrors
 - V. M. Vermeulen+, Nature 600, 424 (2021)
 - Vector dark matter
 - through non-standard forces acting on mirrors
 - YM+, PRD 102, 102001 (2020) LIGO-Virgo-KAGRA, PRD 105, 063030 (2022)
 - Axion dark matter
 - through polarization changes of light
 - K. Nagano, T. Fujita, YM, I. Obata, PRL 123, 111301 (2019)
- KAGRA searches
 - Vector DM with O3 data See, also, my talk Dec 1st morning to be released soon
 - Axion DM will be possible from O4

Summary

- KAGRA is one of the keys to multi-messenger astrophysics
- KAGRA also plays a key role in demonstrating underground and cryogenic technologies for future GW detectors
- KAGRA is now in commissioning mode
 - Will rejoin O4 in Spring 2024 at BNS range of around 10 Mpc

