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 Possibility of NS 1987A 



SN 1987A

• The CCO is believed to be a neutron star (what we 
called “NS 1987A”) from several observations 
such as SN ν detection, SN light curves.

https://public.nrao.edu/news/alma-finds-possible-sign-of-neutron-star-in-supernova-1987a/

Progenitor



Luminosity:    

The powerful origin of the blob is

Lbol,obs = (26 − 90) L⊙

Emission from dust in the SN 1987A ejecta: 
Dust heated by a compact source (NS)?

• The dust peak could be stemed from an additional heating by a compact 
souce: 1-2 mJy @ 679 GHz corresponding to Lbol, dust = (40-90) L8 

[Cigan+2019, ApJ, 886, 51]

High angular resolution ALMA (Atacama Large Millimeter/submillimeter 
Array) images of dust in the ejecta of SN 1987A

blob (hotspot)

Explosion center

Evidence of the NS?

Cigan et al. ApJ 886 51 (2019)

• Non-thermal emission due to pulsar spin-down (PWN87A scenario) 

• Thermal emission (NS87A scenario)

First Direct Evidence  of NS 1987A ?! 
Blob in SN 1987A observed by ALMA 

Page et al. ApJ 898 125 (2020)

Greco+AD et al. 2021 ApJ 908 L45, 2022 ApJ 931 132

AD et al. 2023 ApJ 949 97



PWN87A Scenario



Image for detecting radiation from NS 1987A

https://airandspace.si.edu/multimedia-gallery/nasa-photohjpg  
(©Smithsonian Instituion) https://skfb.ly/6XZIU (© S. Orlando)

γ

Source

(NS 1987A)

https://airandspace.si.edu/multimedia-gallery/nasa-photohjpg
https://skfb.ly/6XZIU


Standard Model of SNR 1987A + Power-Law (PL) 

• Spectrum: Chandra ACIS-S, 
NuSTAR, XMM-Newton 

• Standard Model：Interstellar 
absorption + two-component 
plasma 

•  We add a PL component as 
the non-thermal radiation.

To consider the absorption of 
ejecta, elements profiles are 
needed → 3DMHD Model for 87A

Orlando et al. 2020 A&A 636 A22



• Binary merger progenitor model 
B18.3 (14 +9 , Urushibata+18) 

• Consistent with SN 87A obs.

M⊙ M⊙

3D MHD Model of 87A up to 50 yrs
Synthesized X-ray images and light curves

[Orlando+20, A&A, 636, A22]

Evolution of synthetic X-ray emission map 
based on a 3D magnetohydrodynamical model 

with the successful model shown above (Movies)

HII-region
dominated

ring
dominated

ejecga
dominated

B18.3: Binary merger model

Orlando, S.

(Orlando et al., 2020, Ono et al., 2020)



• Data：Chandra/ACIS-S, XMM-Newton/

pn, RGS, and NuSTAR/FPMA,B

Spectral Fitting
w/   PL comp. (inc. MHD)

(See also Alp et al. 2021, 2022)

•  PL components can explain NuSTAR obs.  

• In 2020, it seems to be consistent even 
without PL component. No distinct 
feature of PWN.

—>Assuming regular syncrotron radiation, it 
may not match with the sparseness of ejecta 
due to free expansion of SNR !?   

—> Other scenarios with non-steady radiation 
such as thermal emission from NS 1987A?

w/o PL comp



NS 87A Scenario



300
500
700

vkick [km/s]

(679 GHz dust emission by ALMA)

• Standard Model + BB components, which are affected 
by the absorption of ejecta 

→ 3DMHD Model for 87A up to 50 yrs 
Orlando et al. 2020 A&A 636 A22

Lynx

Standard Model of SN 1987A + Black-Body (BB)

• The position of CCO is 
consistent with ALMA 
obs. (Cigan+19) 

• Thermal X-ray radiation 
is more absorbed for 
higher kick velocity ( )vkick



The importance of sparseness of ejecta

BB Comp. Inc. MHD effects

Chandra obs.

• If time goes, BB components become active because  
the ejecta density is decreased ( ) 

̶> We may directly see thermal emission somedays  
(but still difficult to reach the flux observed by Chandra…). 

ρejecta ∝ t−3

20??



• Chandra: X-ray satellites with the 
highest spatial resolution now 

• Lynx: High-resolution X-ray 
satellites which will be launched 
in 2036 at the earliest.

Next-generation X-ray astronomy satellite: Lynx

maximize x-ray reflectivity.38,39 As of February 2019, mirror
segments of surface quality comparable to or better than
those of the Chandra mirrors have been made repeatedly.4,40

Each mirror segment is kinematically supported for alignment
and then permanently bonded at four locations onto a silicon
plate, which serves as the structural backbone of a mirror mod-
ule. The entire LMA consists of 611 such modules, and the total
number of mirror segments is 37,492. This technology is highly

amenable to mass production. Multiple, parallel, production
lines at multiple locations will be used to optimize mirror
segment

Full-shell optics. Currently being developed by INAF/Brera
and MSFC, full-shell optics are geometrically most similar to
those of Chandra. Just as the name implies, full-shell optics
are not made up of individual mirror segments but are full cylin-
drical-like revolutions. The primary advantages are that there are

Fig. 6 EAGLE simulation of a 3 × 1012 M⊙ elliptical galaxy as imaged by (a) Chandra ACIS-I and (b) Lynx
HDXI. The Chandra image is background dominated, whereas Lynx can easily distinguish the galaxy
(credit: SAO/J. Zuhone, CU Boulder/B. Oppenheimer).

Fig. 7 Unlike (b) Chandra and (c) XMM-Newton that use a more traditional Wolter Type-I geometry,
(a) Lynx and (d) ATHENA use a Wolter-Schwarzschild configuration that results in a significantly
improved off-axis response. Fine on- and off-axis angular resolution combined with two orders of mag-
nitude increase in effective area over that of Chandra, provides Lynx with the sensitivity needed to carry
out its ambitious science case and is one of the primary features that distinguishes it from existing and
planned x-ray observatories. (e) Table summarizes key parameters for Lynx, Chandra, XMM-Newton,
and ATHENA x-ray observatories.
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Chandra

Lynx
(Taken from NASA’s homepage)
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Lynx

maximize x-ray reflectivity.38,39 As of February 2019, mirror
segments of surface quality comparable to or better than
those of the Chandra mirrors have been made repeatedly.4,40

Each mirror segment is kinematically supported for alignment
and then permanently bonded at four locations onto a silicon
plate, which serves as the structural backbone of a mirror mod-
ule. The entire LMA consists of 611 such modules, and the total
number of mirror segments is 37,492. This technology is highly

amenable to mass production. Multiple, parallel, production
lines at multiple locations will be used to optimize mirror
segment

Full-shell optics. Currently being developed by INAF/Brera
and MSFC, full-shell optics are geometrically most similar to
those of Chandra. Just as the name implies, full-shell optics
are not made up of individual mirror segments but are full cylin-
drical-like revolutions. The primary advantages are that there are

Fig. 6 EAGLE simulation of a 3 × 1012 M⊙ elliptical galaxy as imaged by (a) Chandra ACIS-I and (b) Lynx
HDXI. The Chandra image is background dominated, whereas Lynx can easily distinguish the galaxy
(credit: SAO/J. Zuhone, CU Boulder/B. Oppenheimer).

Fig. 7 Unlike (b) Chandra and (c) XMM-Newton that use a more traditional Wolter Type-I geometry,
(a) Lynx and (d) ATHENA use a Wolter-Schwarzschild configuration that results in a significantly
improved off-axis response. Fine on- and off-axis angular resolution combined with two orders of mag-
nitude increase in effective area over that of Chandra, provides Lynx with the sensitivity needed to carry
out its ambitious science case and is one of the primary features that distinguishes it from existing and
planned x-ray observatories. (e) Table summarizes key parameters for Lynx, Chandra, XMM-Newton,
and ATHENA x-ray observatories.
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(Gaskin et al 2019, JATIS 5, 021001)

• The difference between Chandra 
and Lynx is the number of mirrors, 
which increase the effective area.

25 times !!



We calculate X-ray sensitivity limits to detect thermal emission from 
NS 1987A in 2018, 2027, and 2037, with use of 3D MHD ejecta profiles.   

Parameters for sensitivity limits: 

• Kick velocity : 300, 500, 700km/s 

• Sensitivity of X-ray detectors: Chandra (-2027), Lynx (2037)  

• Gravitational Redshift :   1.2 - 1.3 

• Exposure time (2027,37): 

vkick

1 + z = (1 − 2MNS/RNS)−1/2

texp = 1 Ms

Setup for calculating X-ray Sensitivity Limits

(see the case of  in AD et al. 2023 ApJ 949 97)    texp = 0.2 Ms

To check the validity, we need to compare the obtained 
sensitivity limits with theoretical models of NS luminosity.



Theory of 1D NS luminosity and Setup

developed by Dany Page (1989, 2016)

Akmal, Pandharipande, Ravenhall 1998 Phys. Rev. C 58, 1804

Utorbin et al 2019 A&A 624, 16
Ertl et al 2020 ApJ 890, 45

1. Envelope mass Menv / MNS         

2. Crust Superfluidity (SF)  

 w/o SF  +  four models  

3. NS mass MNS [Msun]                1.18-1.62 

4. EOS                                         APR (fixed)

10−15 − 10−6.6

 0
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 0  0.5  1  1.5

1
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T
cr

 (
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Based on Ho et al 2015, Phys. Rev. C 91, 015806

NS cools down mainly by the  losses. 

To calculate the luminosity of isolated NSs with ,  
we utilize the public cooling code, NSCool

ν

t ∼ O(10 yr)

Parameters of young NSs

Potekhin, Chabrier, D.G. Yakovlev 1997 A&A 323 (1997) 415

See e.g., Page et al. 2004 ApJS 155, 623



NS 87A Scenario: Results



In t = 50 yr (2037), the luminosity is comparable with Lynx 
sensitivity limit →　Possible detection of NS 1987A by Lynx
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Possible Detection of NS 1987A by Lynx 
～Model Dependence～
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• However, if there is any rapid cooling at  (maybe 
derived from crust physics), non-detection scenario holds.
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Not vkick dependence so much (ALMA obs. Is dominant）

Detection Scenario for NS 1987A by Lynx
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• Smaller  is better for the detection. 

• If the envelope mass is higher, or crust SF is weaker, the detectability 
becomes higher. 

vkick

Possibility to detect NS 1987A by Lynx
* Note that our results are similar even if the launched date is delayed.



Conclusion



Conclusion
Motivated by the recent ALMA observations, we 
examine heating sources associated to NS 1987A: 

• PWN87A Scenario：It is likely in 2012 and 2014. 

•  NS87A Scenario：Although it is hard to detect 
thermal emission now, Lynx could detect NS 
1987A in the 2040s if exotic cooling process 
working at  is absent. 

• Future work: Investigation of impact of possible 
crust physics on the NS 1987A

t ∼ 40 yr




