On the Thermal Emission Scenario to Find NS 1987A by Lynx

Akira Dohi (RIKEN ABBL/iTHEMS)

ApJ 949 97 (2023)

Collaborators

E Greco(GRAPPA), S. Nagataki (RIKEN/OIST), M. Ono (Academia Sinica)

M. Miceil (INAF), S. Orlando (INAF), B. Olmi (INAF)

Joint RIKEN/N3AS Workshop on Multi-Messenger Astrophysics, 2023/11/26

Possibility of NS 1987A

SN 1987A

https://public.nrao.edu/news/alma-finds-possible-sign-of-neutron-star-in-supernova-1987a/

• The CCO is believed to be a neutron star (what we called "NS 1987A") from several observations such as SN ν detection, SN light curves.

First Direct Evidence of NS 1987A?! **Blob in SN 1987A observed by ALMA**

• Luminosity: $L_{\text{bol,obs}} = (26 - 90) L_{\odot}$

Cigan et al. ApJ 886 51 (2019) Page et al. ApJ 898 125 (2020)

- O The powerful origin of the blob is
 - Non-thermal emission due to pulsar spin-down (PWN87A scenario)

Greco+AD et al. 2021 ApJ 908 L45, 2022 ApJ 931 132 • Thermal emission (NS87A scenario)

AD et al. 2023 ApJ 949 97

PWN87A Scenario

Image for detecting radiation from NS 1987A

https://airandspace.si.edu/multimedia-gallery/nasa-photohjpg (©Smithsonian Instituion)

https://skfb.ly/6XZIU (© S. Orlando)

Standard Model of SNR 1987A + Power-Law (PL)

- Spectrum: Chandra ACIS-S, NuSTAR, XMM-Newton
- Standard Model : Interstellar absorption + two-component plasma
- We add a PL component as the non-thermal radiation.

To consider the absorption of ejecta, elements profiles are needed \rightarrow 3DMHD Model for 87A Orlando et al. 2020 A&A 636 A22

Spectral Fitting

- Data : Chandra/ACIS-S, XMM-Newton/ pn, RGS, and NuSTAR/FPMA,B
- PL components can explain NuSTAR obs.
- In 2020, it seems to be consistent even without PL component. No distinct feature of PWN.

(See also Alp et al. 2021, 2022)

—>Assuming regular syncrotron radiation, it may not match with the sparseness of ejecta due to free expansion of SNR !?

-> Other scenarios with non-steady radiation such as thermal emission from NS 1987A?

w/o PL comp. (inc. MHD)

NS 87A Scenario

Standard Model of SN 1987A + Black-Body (BB)

- Standard Model + BB components, which are affected by the absorption of ejecta
- \rightarrow 3DMHD Model for 87A up to 50 yrs Orlando et al. 2020 A&A 636 A22
 - The position of CCO is consistent with ALMA obs. (Cigan+19)
 - Thermal X-ray radiation is more absorbed for higher kick velocity (v_{kick})

The importance of sparseness of ejecta

- If time goes, BB components become active because the ejecta density is decreased ($\rho_{\rm ejecta} \propto t^{-3}$)

—> We may directly see thermal emission somedays (but still difficult to reach the flux observed by Chandra…).

Next-generation X-ray astronomy satellite: Lynx

- Chandra: X-ray satellites with the highest spatial resolution now
- Lynx: High-resolution X-ray satellites which will be launched in 2036 at the earliest.
- The difference between Chandra and Lynx is the number of mirrors, which increase the effective area.

	Effective area @ 1 keV. 6 keV	On-axis angular resolution (HPD)	Off-axis angular resolution @ 10' radius (HPD)	
<i>Lynx - design</i> <i>reference mission</i> Silicon meta-shell	$2 m^2$, 0.2 m ²	0.5" times	~1"	
<i>Chandra</i> Direct fabricated, full- shell zerodur	0.08 m ² , 0.03 m ²	0.5"	~8"	
	(G	askin et a	l 2019, JATIS g	5, 021001)

(Taken from NASA's homepage)

Setup for calculating X-ray Sensitivity Limits

- We calculate X-ray sensitivity limits to detect thermal emission from NS 1987A in 2018, 2027, and 2037, with use of 3D MHD ejecta profiles.
- O Parameters for sensitivity limits:
- Kick velocity *v*_{kick}: 300, 500, 700km/s
- Sensitivity of X-ray detectors: Chandra (-2027), Lynx (2037)
- Gravitational Redshift $1 + z = (1 2M_{\rm NS}/R_{\rm NS})^{-1/2}$: 1.2 1.3
- Exposure time (2027,37): $t_{exp} = 1$ Ms (see the case of $t_{exp} = 0.2$ Ms in AD et al. 2023 ApJ 949 97)
- To check the validity, we need to compare the obtained sensitivity limits with theoretical models of NS luminosity.

Theory of 1D NS luminosity and Setup

o NS cools down mainly by the ν losses.

See e.g., Page et al. 2004 ApJS 155, 623

o To calculate the luminosity of isolated NSs with $t \sim O(10 \text{ yr})$,

we utilize the public cooling code, NSCool

developed by Dany Page (1989, 2016)

Parameters of young NSs

1. Envelope mass Menv / MNS

Potekhin, Chabrier, D.G. Yakovlev 1997 A&A 323 (1997) 415

- 2. Crust Superfluidity (SF)
- w/o SF + four models

Based on Ho et al 2015, Phys. Rev. C 91, 015806

3. NS mass M_{NS} [M_{sun}]

4 EOS

Utorbin et al 2019 A&A 624, 16 Ertl et al 2020 ApJ 890, 45

APR (fixed)

Akmal, Pandharipande, Ravenhall 1998 Phys. Rev. C 58, 1804

NS 87A Scenario: Results

Possible Detection of NS 1987A by Lynx

In t = 50 yr (2037), the luminosity is comparable with Lynx sensitivity limit \rightarrow Possible detection of NS 1987A by Lynx

- ALMA: high Menv (depending on ⁴⁴Ti decay heating)
- Lynx: Two scenarios of non-detection and detection

Non-Detection Scenario for NS 1987A by Lynx

Many models are excluded due to ALMA obs.

• However, if there is any rapid cooling at $t \sim 40$ yr (maybe derived from crust physics), non-detection scenario holds.

Non-Detection Scenario for NS 1987A by Lynx

* Note that all models with $v_{kick} = 300 \text{ km/s}$ are excluded.

Not included SF: Weak Strong -7 -7 -7 $\log_{10} (M_{\rm env}/M_{\rm NS})$ -8 -8 -8 -9 -9 -9 WAP -10 **ALL Unpaired** -10 **ALL** Paired $v_{\rm kick}$ = 500 km s⁻¹ -10 $\kappa_{\rm kick} = 500 \, \rm km \, s^{-1}$ $v_{\rm kick} = 500 \, \rm km \, s^{-1}$ -11 -11 -11 1.5 1.2 1.3 1.4 1.5 1.6 1.2 1.3 1.4 1.6 1.2 1.3 1.4 1.5 1.6 -7 -7 -7 ALMA w/o heating log₁₀ (*M*_{env}/*M*_{NS}) -8 -8 -8 Lynx 3σ ALMA w/ heating -9 -9 -9 Lynx 2o **ALL Unpaired** -10 WAP **ALL** Paired -10 -10 ALMA + Lynx with $v_{kick} = 700 \text{ km s}^{-1}$ $v_{\rm kick} = 700 \text{ km s}^{-1}$ $v_{\rm kick} = 700 \text{ km s}^-$ -11 -11 1.4 1.5 1.3 1.4 1.4 1.6 1.2 1.3 1.6 1.2 1.5 1.6 1.2 1.3 1.5 $M_{\rm NS}[M_{\rm o}]$ $M_{\rm NS}[M_{\rm o}]$ $M_{\rm NS}[M_{\rm o}]$

 $v_{\rm kick} \sim 700$ km/s (Roughly upper limits of ALMA obs.)

Detection Scenario for NS 1987A by Lynx

 Heavy envelope, i.e., many light elements the NS 1987A is favored. Similar constraints of ALMA obs.

Detection Scenario for NS 1987A by Lynx

SF: Not included

Weak

Strong

Not vkick dependence so much (ALMA obs. Is dominant)

Possibility to detect NS 1987A by Lynx

* Note that our results are similar even if the launched date is delayed.

- Smaller v_{kick} is better for the detection.
- If the envelope mass is higher, or crust SF is weaker, the detectability becomes higher.

Conclusion

Conclusion

- Motivated by the recent ALMA observations, we examine heating sources associated to NS 1987A:
- PWN87A Scenario : It is likely in 2012 and 2014.
- NS87A Scenario : Although it is hard to detect thermal emission now, Lynx could detect NS 1987A in the 2040s if exotic cooling process working at *t* ~ 40 yr is absent.
- Future work: Investigation of impact of possible crust physics on the NS 1987A