On the Thermal Emission Scenario
to Find NS 1987A by Lynx

Akira Dohi (RIKEN ABBL/iTHEMS)

Apd 949 97 (2023)

Collaborators
E Greco(GRAPPA), S. Nagataki (RIKEN/OIST) , M. Ono (Academia Sinica)

M. Miceil (INAF), S. Orlando (INAF), B. Olmi (INAF)



Possibility of NS 1987A



SN 1987A

https://public.nrao.edu/news/alma-finds-possible-sign-of-neutron-star-in-supernova-1987a/

. The CCO Is believed to be a neutron star (what we
called "NS 1987A") from several observations
such as SN v detection, SN light curves.



First Direct Evidence of NS1987A 2!
Blob in SN 1987A observed by ALMA

- o VDR blob (hotspot) —> | Evidence of the NS?
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O Luminosity: Ly ops = (26 — 90) L,
O The powerful origin of the blob is

Cigan et al. ApJ 886 51 (2019)
Page et al. ApJ 898 125 (2020)

e Non-thermal emission due to pulsar spin-down (PWN87A scenario)

Greco+AD et al. 2021 Apd 908 L45, 2022 Apd 931 132
* Thermal emission (NS87A scenario) ap o a1 2023 ApJ 949 97



PWNS87A Scenario



Image for detecting radiation from NS 1987A
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https:/skfb.ly/6XZIU (© S. Orlando)



https://airandspace.si.edu/multimedia-gallery/nasa-photohjpg
https://skfb.ly/6XZIU

Standard Model of SNR 1987A + Power-Law (PL)

. Spectrum: Chandra ACIS-S,
NuSTAR, XMM-Newton

. Standard Model : Interstellar
absorption + two-component
plasma

We add a PL component as
the non-thermal radiation.

To consider the absorption of
ejecta, elements profiles are

NuSTAR

needed — 3DMHD Model for 87A w4 (3-30 keV)

Orlando et al. 2020 A&A 636 A22



5D MHD Model of 87A up to 50 yrs

(Orlando et al., 2020, Ono et al., 2020)

e Binary merger progenitor model Hll-region  ring ejecga
, dominated dominated dominated
B18.3 (14M+9M,, Urushibata+18) y / /

e Consistent with SN 87A obs.



w/o PL comp. (inc. MHD)

Spectral Fitting

e Data : Chandra/ACIS-S, XMM-Newton/
pn, RGS, and O

 PL components can explain NuSTAR obs.

e |n 2020, it seems to be consistent even

without PL component. No distinct
feature of PWN.

(See also Alp et al. 2021, 2022)

O

—>Assuming regular syncrotron radiation, it
may not match with the sparseness of ejecta
due to free expansion of SNR I?

—> Other scenarios with non-steady radiation
such as thermal emission from NS 1987A?



NS 87A Scenario




Standard Model of SN 1987A + Black-Body (BB)

. Standard Model + BB components, which are affected
by the absorption of ejecta

— 3DMHD Model for 87A up to 50 yrs

Orlando et al. 2020 A&A 636 A22
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The importance of sparseness of ejecta

Chandra obs. 2077

- | time goes, BB components become active because

the ejecta density is decreased (p,;..., x ™)

ejecta

—> We may directly see thermal emission somedays
(but still difficult to reach the flux observed by Chandra:-).




Next-generation X-ray astronomy satellite: Lynx

e Chandra: X-ray satellites with the
highest spatial resolution now

e Lynx: High-resolution X-ray
satellites which will be launched
in 20306 at the earliest.

e The difference between Chandra /
and Lynx is the number of mirrors,

which increase the effective area. /

- \

25 times !
C_ (Taken from NASA’'s homepage)

(Gaskin et al 2019, JATIS 5, 021001)



Setup for calculating X-ray Sensitivity Limits

O We calculate X-ray sensitivity limits to detect thermal emission from
NS 1987A in 2018, 2027, and 2037, with use of 3D MHD ejecta profiles.

O Parameters for sensitivity limits:

o Kick velocity v 4: 300, 500, 700km/s

o Sensitivity of X-ray detectors: Chandra (-2027), Lynx (2037)
e Gravitational Redshift 1 + z = (1 — 2Mys/Ryg) % 1.2-1.3

o Exposure time (2027,37): fox, = 1 Ms

(see the case of fexp = 0.2 Msin AD et al. 2023 ApJ 949 97)

O To check the validity, we need to compare the obtained
sensitivity limits with theoretical models of NS luminosity.



Theory of 1D NS luminosity and Setup

0 NS cools down mainly by the v losses.

See e.g., Page et al. 2004 ApJS 155, 623
o To calculate the luminosity of isolated NSs with r ~ O(10 yr),

we utilize the public cooling code, NSCool

developed by Dany Page (1989, 20106)
Parameters of young NSs
1. Envelope mass Menv/ Mns 10712 — 1075
Potekhin, Chabrier, D.G. Yakovlev 1997 A&A 323 (1997) 415 20 CVé’éE: ““““ Is,n )
N 15 [y Paired f
2. Crust Superfluidity (SF) 5
w/o0 SF + four models 5 m ;
Based on Ho et al 2015, Phys. Rev. C 91, 015806 o N S |
0 0.5 o 15
3. NS mass Mns [Msun] 1.18-1.62 ™™’

4

Utorbin et al 2019 A&A 624, 16
Ertl et al 2020 ApJ 890, 45

. EOS APR (fixed)

Akmal, Pandharipande, Ravenhall 1998 Phys. Rev. C 58, 1804



NS 87A Scenario: Results



Possible Detection of NS 1987A by Lynx
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Int =50 yr (2037), the luminosity is comparable with Lynx
sensitivity limit — Possible detection of NS 1987A by Lynx



Possible Detection of NS 1987A by Lynx
~Model Dependence~
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. ALMA: high Menv (depending on 44Ti decay heating)

- Lynx: Two scenarios of non-detection and detection



Non-Detection Scenario for NS 1987A by Lynx

Crust SF

All Unpaired WAP ALL Paired
models CCDK T —
4 I ' I ' I - I I ' I - I ' I
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- Many models are excluded due to ALMA obs.

. However, it there is any rapid cooling at ¢t ~ 40 yr (maybe

derived from crust physics), non-detection scenario holds.



Non-Detection Scenario for NS 1987A by Lynx

* Note that all models with v 4, = 300 km/s are excluded.
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Vi ~ 700 km/s (Roughly upper limits of ALMA obs.)



Detection Scenario for NS 1987A by Lynx

Crust SF
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. Heavy envelope, I.e., many light elements the NS
1987A is favored. Similar constraints of ALMA obs.



Detection Scenario for NS 1987A by Lynx
SF: Not included
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Not vkick dependence so much (ALMA obs. Is dominant)



Possibility to detect NS 1987A by Lynx

* Note that our results are similar even if the launched date is delayed.

e Smaller v, is better for the detection.

 If the envelope mass is higher, or crust SF is weaker, the detectability
becomes higher.



Conclusion



Conclusion

o Motivated by the recent ALMA observations, we
examine heating sources associated to NS 1987A:

- PWNB8/7A Scenario : ltis likely in 2012 and 2014.

NS87A Scenario : Although It Is hard to detect

thermal emission now, Lynx coulc
1987A in the 2040s if exotic coo
working at ¢ ~ 40 yr IS absent.

detect NS
INg process

. Future work: Investigation of impact of possible

crust physics on the NS 1987A





