INSTITUTE FOR ADVANCED STUDY

New black hole mergers from a GW search with higher harmonics

> (Jay) Digvijay Wadekar IAS, Princeton

- with
- T. Venumadhav, J. Roulet, A. Mehta S. Olsen, J. Mushkin, B. Zackay, M. Zaldarriaga

The era of GW astrophysics has begun!

ET (Einstein telescope)

CE (Cosmic explorer)

Overview of a (templated) GW search pipeline

Convolve LVK data with templates

Rank triggers based on coherence of detectors

Convolve LVK data with templates

 $\sim 10^5$ triggers

Rank triggers based on coherence of detectors

Convolve LVK data with templates

 $\sim 10^5$ triggers

Generally only 22 mode and aligned-spins assumed in GW template banks

Perform PE (param. estimation)

Generally only (2,2) mode and aligned-spins assumed in GW template banks

Time

Why is searching with HM difficult?

I. Template bank size increases by a factor of ~100 w.r.t 22-only

(as we now need to sample over amplitude and phase of HMs: i, ϕ_{ref})

Significance of higher modes (HM)

- Breaking important parameter degeneracies
 - Distance vs inclination (useful for precise determination of H_{0}

$$\frac{|h_{33}|}{|h_{22}|} \propto \left[\frac{m_1 - m_2}{m_1 + m_2}\right] \text{ velocity}^{1/3} \sin(m_1 + m_2)$$

Significance of higher modes (HM)

- Breaking important parameter degeneracies
- Testing GR in the strong field regime
- Probing properties of remnant (recoil kick, ringdown spectrum)

Bustillo et al 18, Kastha et al 18, Varma et al 20, Kapadia et al 20, Singh et al 21,

$$\frac{|h_{33}|}{|h_{22}|} \propto \left[\frac{m_1 - m_2}{m_1 + m_2}\right] \text{ velocity}^{1/3} \sin(i_{\text{in}})$$

velocity $\propto M_{\rm tot} f$

Prev. approaches for HM search

(SNR timeseries)

We also improve sensitivity of all modes the high-mass regime

High mass wfs can be effectively mimicked by noise transients

.9998

We remove noise transients in GW data ("Glitches")

L-L1_GWOSC_O3a_4KHZ_R1-1243619328-4096

Time (s) - 1243619328.0 L-L1_GWOSC_O3a_4KHZ_R1-1243619328-4096

We isolate templates which are New improvements : glitchy and penalize them

DW et al. (in prep)

New events from our search with higher modes

(PRELIMINARY)

Colored: New detections Gray: LVC catalog + Other pipelines (OGC + IAS-22)

Colored: New detections

$$\chi_{\text{eff}} = \frac{m_1 \chi_1 + m_2}{m_1 + m_1}$$

(Component of BH spins aligned with \vec{L}_{orb})

Colored: New detections

Bayesian evidence for HM or spin-precession in new events

Evidence for HM or precession in new events

Part II

Searching for love

- with H. S. Chia T. Edwards A. Zimmerman & IAS group
- arXiv: 2306.00050

Searching for love

Part II

(i.e. objects with large tidal deformability)

- with
- H. S. Chia
- T. Edwards
- A. Zimmerman
 - & IAS group
- arXiv: 2306.00050

Introduction

• Tidal deformability scales sensitively with compactness

$$\delta Q_{ij} = -\Lambda m^5 \mathscr{C}_{ij}$$
$$\Lambda = \frac{2}{3}k \left(\frac{r}{m}\right)^5$$

k:Love number (Love 1912)

• Tidal deformability scales sensitively with compactness

Could there be exotic massive objects with large Λ ?

Arvanitaki et al II, Baryakhtar et al I5

Boson stars (compact, stationary configurations of scalar field bound by gravity)

Sanchis-Gual et al. 22, Leibling et al

General GW search pipeline

Perform PE (param. estimation)

Current BBH template banks can miss such objects

Current BBH template banks can miss such objects

Searching over LVC OI-O3 data: null results

Constraints on merger rate

Summary

- We showed a efficient method of searching with GW higher harmonics (only $3 \times \text{more expensive w.r.t}$ (2,2) search)
- Searched in O3 data and found new mergers
- We also performed a search for high- Λ exotic objects with null results

Backup slides

TABLE I. New events in our search $p_{astro} > 0.5$. The PE section shows results from parameter estimation runs with the IMRPhenomXPHM model. The errorbars correspond to 90% uncertainties and $\ln \mathcal{L}_{max}$ denotes the maximum log likelihood. Note that the PE results here incorporate precession and use Virgo data when available, unlike our search. $\rho_{H,L}^2$ denote the SNR of the search triggers in the Hanford and Livingston detectors. We also perform PE separately with 22-only aligned-spin waveforms and report the change in evidence when aligned-spin HM and precession are iteratively included.

Sr.	Event	Bank	PE					$\Delta \ln(\text{evidence})$		$o^2_{}$	a^2	IFAR (yr)		n
No.			$m_1^{ m src}({ m M}_{\odot})$	$m_2^{ m src}({ m M}_{\odot})$	$\chi_{ m eff}$	z	$\ln \mathcal{L}_{\rm max}$	HM	HM+P	$ P_{\rm H}$	$ ho_{ m L}$	per bank	overall	Pastro
1	GW190524_134109	10,0	61^{+21}_{-14}	43^{+18}_{-15}	$0.5^{+0.4}_{-0.6}$	$1.4^{+0.7}_{-0.6}$	34.2	-0.49	-0.24	23.3	44.4	5.9	0.74	0.89
2	GW191113_103541	9,0	80^{+30}_{-30}	23^{+22}_{-7}	$0.7\substack{+0.2 \\ -0.2}$	$0.9\substack{+0.7 \\ -0.4}$	38.6	1.21	1.8	$ 36.4\rangle$	39.1	5.8	0.71	0.91
3	GW190806_033721	8,1	61^{+23}_{-16}	38^{+17}_{-13}	$0.79\substack{+0.18 \\ -0.44}$	$1.6^{+0.7}_{-0.7}$	27.7	-0.17	-0.07	35.8	33.8	6.4	0.68	0.89
4	GW190615_030234	10,0	64^{+18}_{-12}	50^{+15}_{-12}	$0.1^{+0.3}_{-0.5}$	$0.9^{+0.3}_{-0.4}$	44.7	0.01	-0.5	24.1	50.5	3.1	0.35	0.82
5	GW190604_103812	12,0	130^{+40}_{-40}	35^{+17}_{-10}	$0.94^{+0.05}_{-0.15}$	$1.6^{+0.7}_{-0.7}$	27.2	3.83	4.09	29.6	38.1	2.1	0.21	0.75
6	GW200210_100022	9,0	64^{+23}_{-20}	40^{+20}_{-20}	$0.83\substack{+0.16 \\ -0.83}$	$1.5^{+0.9}_{-0.6}$	32.2	-0.26	0.44	29.2	35.9	1.8	0.19	0.74
7	$GW190605_025957$	13,0	110^{+40}_{-20}	90^{+30}_{-30}	$0.7^{+0.3}_{-0.6}$	$1.5^{+0.7}_{-0.7}$	40.3	-0.3	-0.29	43.0	46.5	2.0	0.15	0.69
8	GW200304_172806	8,1	80^{+30}_{-30}	35^{+28}_{-17}	$0.61\substack{+0.18 \\ -0.84}$	$1.2^{+0.7}_{-0.5}$	31.0	2.0	3.74	40.8	28.1	1.5	0.14	0.69
9	$GW190530_{-}030659$	4,2	33^{+17}_{-12}	19^{+7}_{-7}	$0.5^{+0.2}_{-0.3}$	$0.60^{+0.22}_{-0.19}$	34.7	1.31	2.63	34.5	36.0	2.3	0.12	0.67
10	GW190708_211916	8,1	60^{+20}_{-20}	28^{+15}_{-11}	$0.6^{+0.3}_{-0.3}$	$1.0\substack{+0.6 \\ -0.4}$	32.6	3.04	4.09	42.1	32.8	0.89	0.086	0.60
11	GW190530_133833	12,0	80^{+40}_{-20}	60^{+26}_{-20}	$0.3^{+0.5}_{-0.9}$	$1.3^{+0.8}_{-0.6}$	26.6	-0.14	0.1	38.2	31.7	0.80	0.084	0.59
12	GW190907_111633	12,0	100^{+30}_{-30}	70^{+30}_{-20}	$0.93\substack{+0.06 \\ -0.19}$	$1.5^{+0.8}_{-0.6}$	31.0	-0.07	0.54	27.1	42.3	0.75	0.077	0.58
13	GW200301_211019	1,2	19^{+7}_{-3}	14^{+4}_{-3}	$-0.2^{+0.4}_{-0.3}$	$0.37\substack{+0.18 \\ -0.15}$	33.4	-0.0	0.08	36.5	38.3	2.2	0.069	0.52