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B. Sensitivity comparison at fixed signal-to-noise ratio

We wish to evaluate and compare the sensitivity to a set
of given signals using both our template banks containing
higher-order mode waveforms, and not containing them.
This directly gives a measure of how much sensitivity
would be gained by using our new higher-order mode
search method. We first must define how this sensitivity
will be computed. To assess the sensitivity to a given set of
waveforms, drawn from some stated distribution, we must,
for each waveform gi in the parameter space we consider,
compute the fitting factor that will be recovered using the
given template bank, composed of waveforms bi. The
distribution of fitting factors for the set of signals allows us
to understand what fraction of signal-to-noise ratio we will
recover for each waveform, and identify regions of param-
eter space where sensitivity is poor. However, it can often
be misleading to only show the distribution of fitting
factors, as often the systems for which fitting factors are
smallest are also those ones whose observable gravita-
tional-wave signal is weaker. To take into account the fact
that different signals can be observed at different distances,
one can define the corresponding “signal recovery fraction”
of a given template bank bi to a distribution of signals gi as

SRF ¼
P

iðFFðgi; bjÞÞ3ðgijgiÞ3P
iðgijgiÞ3

: ð17Þ

This was first introduced in terms of an “effective fitting
factor” in [97]. One can understand the signal recovery
fraction as the fraction of signals from a distribution gi that
would be recovered above a fiducial signal-to-noise ratio
threshold with the template bank bi compared to a template
bank with a fitting factor of 1 for all gi. For the plots shown

in this section we compute the fitting factor, and then signal
recovery fractions, using Eq. (14) to maximize over u. We
have also created the plots using Eq. (13) and the numeric
values agree to within 0.05% with those in the plots shown.
This demonstrates again that it is sufficient to use the
computationally simpler Eq. (14) when performing a search
using higher-order mode waveforms.
In Fig. 3 we plot the signal recovery fraction as a

function of the two component masses for both the early
and design Advanced LIGO sensitivity curves, and for
template banks with and without higher-order modes. For
each point shown on this plot the signal recovery fraction is
calculated by choosing a set of gi consisting of 500
waveforms. Each waveform has the same values of com-
ponent masses, and the source orientations and sky loca-
tions are chosen isotropically. We show 1000 unique points
in these plots, so a total of 500 000 waveforms are used in
these simulations. We can clearly see in these plots that for
equal mass systems the signal recovery fractions are large
for template banks with and without higher-order modes.
However, as the mass ratios become larger the signal
recovery fraction can become as small as 0.65 when
omitting higher-order modes, implying that ignoring
higher-order modes in a search would result in a reduction
in detection rate of up to 35% for systems with those
masses. When we include higher-order mode waveforms,
the signal recovery fractions are much more uniform, as
expected. Values of 0.95 are consistent with the loss
expected due to discreteness of the template bank. For
the Advanced LIGO design sensitivity curve the effect of
higher-order modes is smaller than that of the representa-
tive early Advanced LIGO noise curve. This is expected as
the early Advanced LIGO noise curve is comparatively less

FIG. 2. The left panel shows the distribution of templates, as a function of the total mass and mass ratio, for the template bank created
for the early Advanced LIGO noise curve. The black crosses indicate the templates that are needed to cover the parameter space if
higher-order modes are omitted, the red circles indicate the additional templates that are required if higher-order modes are included in
the search parameter space. The right panel shows the distribution of the inclination angle of the higher-order mode waveforms in the
template bank created for the Advanced LIGO design noise curve.

HARRY, BUSTILLO, and NITZ PHYS. REV. D 97, 023004 (2018)
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reliable way to quantify precession in the population,
although Gerosa et al. [147] have developed generalized
precession parameters to this end which may prove
informative as measurements improve in other spin dimen-
sions. As seen in Fig. 3(c), our preferred visualization
method for examining precession in an individual event is a
likelihood mapping of the in-plane spin posterior for the
primary BH. We provide code to produce these plots in the
public repository with the samples: https://github.com/seth-
olsen/new_BBH_mergers_O3a_IAS_pipeline.

APPENDIX B: COMPUTING ASTROPHYSICAL
PROBABILITIES

The probability that an event is astrophysical, pastro, is
defined as the ratio of the data’s Bayesian evidence under
the signal detection hypothesis (H1: the data contains a GW
signal from a BBH merger) to the sum of this signal
evidence and the data’s evidence under the noise hypothesis
(H0: the data does not contain a BBH merger signal). Both
hypotheses pose issues in evidence computations. The
evidence under H0 (and likelihood computation more
generally) suffers from the failure of the stationary noise
assumption, since not all nonstationarity can be removed in
data processing. Our pipeline takes steps to mitigate this
such as correcting likelihood computations for a linear PSD
drift and in-painting bad data segments [148]. We veto
glitches with the same methods as in the previous IAS
catalog [10].
The evidence underH1 requires an astrophysical prior in

order to reflect the differences between detectable merger
rates in different regions of physical parameter space, but
this prior’s dependence on intrinsic parameters is unknown.
In an attempt to remain as agnostic as possible about the
astrophysical population, we do not introduce additional
prior information beyond what already goes into the
computation of the ranking score (see Appendixes D
and C). We aim to devise a method that is as simple as
possible so it is straightforward for the reader to identify
where their own choice of astrophysical prior could enter.
More specifically, we would like to measure pastro directly
from the distribution of triggers, which includes an addi-
tional 2000 O3a runtimes worth of noise realizations
generated from the O3a data using timeslides (for trigger-
ing details, see [5,10]). To this end, we estimate the
densities of triggers appearing in Eq. (2), where we express
the astrophysical probability as a function of our ranking
score (Σ):

pastroðΣÞ ¼
dN=dΣðΣjH1Þ

dN=dΣðΣjH0Þ þ dN=dΣðΣjH1Þ
: ðB1Þ

Figure 15 shows the distribution of scores in our search.
For the purpose of determining pastro we combined all our
banks together. To bring the scores computed for each bank

into a common scale we subtract a constant from the scores
in each bank such that a score of zero corresponds to an
expectation of one trigger during O3a in the background
distribution of that bank. Figure 15 shows the survival
function, defined as:

SðΣÞ ¼
Z

∞

Σ

dN
dΣ

ðΣ0ÞdΣ0: ðB2Þ

Thus SðΣÞ quantifies the probability of obtaining a score
higher than Σ.
To obtain dN

dΣ ðΣÞwe could fit a parametrized model to the
distribution of events. We will do something simpler and
construct a model directly based on SðΣÞ. To do so we need
to divide SðΣÞ by a quantity with units of Σ that quantifies
the range of scores over which events are being accumu-
lated at a given value of Σ. Let us introduce:

LðΣÞ ¼ S−1ðΣÞ
Z

∞

Σ
ðΣ0 − ΣÞ dN

dΣ
ðΣ0ÞdΣ0: ðB3Þ

Both SðΣÞ and LðΣÞ can easily be estimated from the data.
It turns out that their ratio can be used to construct a good
model for the probability distribution functions.
It is useful to consider some simple probability distri-

butions and work out the relation between dN
dΣ ðΣÞ, SðΣÞ and

LðΣÞ. Two examples that are relevant for the distribution of
background and astrophysical events in our search are the
exponential and power law distributions. In those cases
one gets:

dN
dΣ

ðΣÞ ¼ A exp−γΣ →
dN
dΣ

ðΣÞ ¼ SðΣÞ=LðΣÞ

dN
dΣ

ðΣÞ ¼ AΣ−γ →
dN
dΣ

ðΣÞ ¼ ðγ − 2Þ
ðγ − 1Þ

SðΣÞ=LðΣÞ: ðB4Þ

As might be expected for these simple distributions that do
not have a preferred scale, dNdΣ is given by SðΣÞ=LðΣÞ times
a normalization coefficient. An overall coefficient of one

FIG. 15. Survival function for scores Σ as defined in Eq. (B2).
The right panel shows a zoomed in version in the range relevant
for estimating pastro near pastro ∼ 0.5. The lines show the fit from
our simple analytical model [Eq. (B4)].

SETH OLSEN et al. PHYS. REV. D 106, 043009 (2022)
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and as the mass ratio becomes more extreme the effective
spin increases to roughly 0.5 for the NSBH solution. A
catalogue search for an EM counterpart of a NSBH merger
at the time and direction of this event may prove fruitful.
The sky localization is well constrained and is presented
in Fig. 4.

2. GW190821_124821

This event has pastro ¼ 0.61 in our search, but PE results
suggest that its significance could improve in future
searches that use Virgo data and templates with higher
modes and precession. The source’s effective spin is almost
surely negative, with χeff ¼ −0.45þ0.33

−0.17 (see Fig. 10),
indicative of a dynamical formation channel [71,72]. The

FIG. 4. Sky localization for the possible NSBH candidates from the events new to this work, with priors that are uniform in detector-
frame constituent masses, effective spin, and comoving VT. Two-dimensional 50% and 90% contours are drawn. The x-axis represents
right ascension in hours, and the y-axis represents declination in degrees.

FIG. 5. GW190704_104834 has pastro ¼ 0.81 and a secondary
which may be a BH in the LMG or a heavy NS. This source
should be targeted by searches for EM counterparts of NSBH
mergers (sky localization, which is well-constrained, is presented
in Fig. 4).

FIG. 6. GW190707_083226 has pastro ¼ 0.94 and the maxi-
mum likelihood region has a significant contribution from higher
harmonics.
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in GW template banks



Sum

Time

Quadrupole (2,2) mode

Generally only (2,2) mode and aligned-spins assumed 
in GW template banks

|h33 |
|h22 |

∝ [ m1 − m2

m1 + m2 ] velocity1/3 sin(i)
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B. Sensitivity comparison at fixed signal-to-noise ratio

We wish to evaluate and compare the sensitivity to a set
of given signals using both our template banks containing
higher-order mode waveforms, and not containing them.
This directly gives a measure of how much sensitivity
would be gained by using our new higher-order mode
search method. We first must define how this sensitivity
will be computed. To assess the sensitivity to a given set of
waveforms, drawn from some stated distribution, we must,
for each waveform gi in the parameter space we consider,
compute the fitting factor that will be recovered using the
given template bank, composed of waveforms bi. The
distribution of fitting factors for the set of signals allows us
to understand what fraction of signal-to-noise ratio we will
recover for each waveform, and identify regions of param-
eter space where sensitivity is poor. However, it can often
be misleading to only show the distribution of fitting
factors, as often the systems for which fitting factors are
smallest are also those ones whose observable gravita-
tional-wave signal is weaker. To take into account the fact
that different signals can be observed at different distances,
one can define the corresponding “signal recovery fraction”
of a given template bank bi to a distribution of signals gi as

SRF ¼
P

iðFFðgi; bjÞÞ3ðgijgiÞ3P
iðgijgiÞ3

: ð17Þ

This was first introduced in terms of an “effective fitting
factor” in [97]. One can understand the signal recovery
fraction as the fraction of signals from a distribution gi that
would be recovered above a fiducial signal-to-noise ratio
threshold with the template bank bi compared to a template
bank with a fitting factor of 1 for all gi. For the plots shown

in this section we compute the fitting factor, and then signal
recovery fractions, using Eq. (14) to maximize over u. We
have also created the plots using Eq. (13) and the numeric
values agree to within 0.05% with those in the plots shown.
This demonstrates again that it is sufficient to use the
computationally simpler Eq. (14) when performing a search
using higher-order mode waveforms.
In Fig. 3 we plot the signal recovery fraction as a

function of the two component masses for both the early
and design Advanced LIGO sensitivity curves, and for
template banks with and without higher-order modes. For
each point shown on this plot the signal recovery fraction is
calculated by choosing a set of gi consisting of 500
waveforms. Each waveform has the same values of com-
ponent masses, and the source orientations and sky loca-
tions are chosen isotropically. We show 1000 unique points
in these plots, so a total of 500 000 waveforms are used in
these simulations. We can clearly see in these plots that for
equal mass systems the signal recovery fractions are large
for template banks with and without higher-order modes.
However, as the mass ratios become larger the signal
recovery fraction can become as small as 0.65 when
omitting higher-order modes, implying that ignoring
higher-order modes in a search would result in a reduction
in detection rate of up to 35% for systems with those
masses. When we include higher-order mode waveforms,
the signal recovery fractions are much more uniform, as
expected. Values of 0.95 are consistent with the loss
expected due to discreteness of the template bank. For
the Advanced LIGO design sensitivity curve the effect of
higher-order modes is smaller than that of the representa-
tive early Advanced LIGO noise curve. This is expected as
the early Advanced LIGO noise curve is comparatively less

FIG. 2. The left panel shows the distribution of templates, as a function of the total mass and mass ratio, for the template bank created
for the early Advanced LIGO noise curve. The black crosses indicate the templates that are needed to cover the parameter space if
higher-order modes are omitted, the red circles indicate the additional templates that are required if higher-order modes are included in
the search parameter space. The right panel shows the distribution of the inclination angle of the higher-order mode waveforms in the
template bank created for the Advanced LIGO design noise curve.
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Harry et al. 18, Chandra et al. 22, Capano et al. 14

22 only
22 + HM

x

Why is searching with HM difficult?

1. Template bank size increases 
    by a factor of ~100 w.r.t 22-only

Templates

(as we now need to sample over 
amplitude and phase of HMs: )i, ϕref
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Significance of higher modes (HM)

• Breaking important parameter degeneracies 
 
- Distance vs inclination 
  (useful for precise determination of )H0

22-only

👁

👁

|h33 |
|h22 |

∝ [ m1 − m2

m1 + m2 ] velocity1/3 sin(iincl)
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• Breaking important parameter degeneracies 

• Testing GR in the strong field regime 

• Probing properties of remnant (recoil kick, 
ringdown spectrum)

Bustillo et al 18, Kastha et al 18, 
Varma et al 20, Kapadia et al 20, 
Singh et al 21, 

Significance of higher modes (HM)

|h33 |
|h22 |

∝ [ m1 − m2

m1 + m2 ] velocity1/3 sin(iincl)

velocity ∝ Mtot f
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ρ2
modes

ρ2
combined

Our approach:  
Convolve the data with 
each mode separately ρreal/imag

(SNR timeseries)



We also improve sensitivity of 
all modes the high-mass regime

15
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High mass wfs can be effectively mimicked by noise transients

Injected BBH merger

m1, m2 = 280,70
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After band eraser

Original

After “band eraser”

We remove noise transients in GW data (“Glitches”)
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Original

After “band eraser”
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We isolate templates which are 
glitchy and penalize them

(Gaussian noise)

DW et al.
(in prep)

New improvements :

P(ρ2) ∝ e−ρ2/2



New events from our search 
with higher modes
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Gray: LVC catalog + Other pipelines (OGC + IAS-22)
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tidal deformability)
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δQij = −Λ m5 ℰij

Black Hole Love Numbers

Binnington, Poisson [0906.1366], Damour, Nagar [0906.0096], Kol, Smolkin [1110.3764]  
HSC [2010.07300], Charalambous, Dubovsky, Ivanov [2102.08917], Le Tiec, Casals [2007.00214] 

kE`m = kB`m = 0
<latexit sha1_base64="Wo2JUkkxkxddlmLN7IO4qfTI4O4="></latexit>

<latexit sha1_base64="mfTOrjPl11dsEYKOLnimk35ye3c="></latexit>
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For black holes,           . In fact, the black hole Love numbers vanish for:
<latexit sha1_base64="1AYP50OPLO7v3BpKe4I6ypkN2HQ="></latexit>

k2 = 0

• All values of black hole spin 
• Both electric and magnetic perturbations  
• All orders in multipole expansion

[Part I of this talk] 

• Tidal deformability scales sensitively  
with compactness

Introduction

Λ =
2
3

k ( r
m )

5

(Love 1912)Love numberk :

This update: large      values
• For bodies with low or no spin, tidal 

parameters most important finite-size effect 

• Search: 3D template bank 

• New cutoffs needed for large tidal 
parameters 

• Use IAS search code (Venumadhav et al. 
1902.10341, Olsen et al. 2201.02252, …) 

• Vetoes, inpainting, PSD drift corrections, 
coherence and consistency tests 

• Banks set by A(f)
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Figure 1: Performance of a binary black hole template bank for waveforms with large love

numbers. (HSC: Improve resolution)

plates rapidly become ine↵ective, even when allowing for spins close to maximal.4 This rough

bound is determined by choosing the region of the parameter space where "  0.96 since this is a

typical value used in LIGO-Virgo template bank construction. The maximum value of ⇤̃  107

is roughly set by the regime of validity of our waveform model and is discussed extensively in

§ 2.1. The primary aim of this paper is therefore to expand the set of template waveforms above

the ⇤̃ ⇠ 103 region to search for signals that would lie in this unexplored parameter space.

(HSC: This should also be somehow adapted in the intro too:) Absent a specific model of

compact object in mind, in §2.1.1 we focus on the inspiral stage of the binary coalescence where

the physics is clean and analytically understood, with the putative new physics parameterized

by the tidal parameter. We ignore the merger part of the waveform as that regime of a binary

coalescence is model dependent and generally requires input from numerical simulations.

Notations For dimensionful parameters, we di↵erentiate detector-frame and source-frame

quantities with the superscript src. For example, the detector-frame and source-frame chirp

masses are denoted by M and M
src. (HSC: Mention detector frame vs source frame parameter

notations)

4To match closely with our search parameters described below, for our e↵ectualness calculation we use 20Hz and

1024Hz for our minimum and maximum frequencies respectively. In addition, we use 0.0125Hz for our frequency

spacing and a reference 03a spectral noise densityTE: add citation.
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Figure 3: (left) The detector-frame mass range for the input waveforms used to construct our

template banks. (right) The parameter space is cleanly stratified into six template banks along

the ⇤̃ � M plane. This partitioning is determined by a KMeans algorithm, which found a set

of reference amplitudes that are essentially di↵erentiated by their reference cuto↵ frequencies fc
(see Fig. 4 and Table 1 for further details). The white region on the top right has been masked

out because the cuto↵s in that parameter space region are fc < 60Hz.

2.2.2 Bank Details and E↵ectualness

Having determined the search coverage above, we construct a template bank using the geometric-

placement formalism described in [31]. The key idea of this method lies in the following decom-

position of the waveform phase

 (f) =  (f) + c0 + c1f +
Ndim+2X

↵=2

c↵ ↵(f) , (2.9)

where  is an average phase chosen for convenience, c0 and c1 are coe�cients that capture the

overall constant and linear-in-time phase o↵set, the remaining c↵ is a set of coe�cients which only

depend on the intrinsic source parameters,  ↵ is a set of orthonormal basis function constructed

such that its inner product defines a locally Euclidean space in template space, and Ndim is

the number of  ↵ dimensions for the intrinsic source parameters. The basis functions and c↵’s

are computed through a SVD performed on random phase samples drawn in our designated

parameter space, with Ndim and the distance between templates, �c↵, suitably chosen such that

the truncation in SVD stikes a good balance between the e↵ectualness of the bank and the

templates in c↵ space (see discussion below).

As is standard practice in the GW matched-filtering literature, we divide the parameter space

into banks and subbanks in order to mitigate the look elsewhere e↵ect. Instead of dividing the

banks based on mass ranges and subbanks based on a set of reference amplitudes, as in the

original work [31], in this paper we adopt a reversed strategy [40]. In other words, we partition

10
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Following Ref. [17], we here refer to !ðtidÞ as the tidal

Love number3 and we refer to kðtidÞ2 and !!ðtidÞ as the tidal
apsidal constant and dimensionless tidal Love number,
respectively.

The prescription of the tidal Love number is completed
by finding the value of EðtidÞ, which is determined by the
asymptotic behavior of h2 in the buffer zone. By Taylor
expanding this quantity in the buffer zone, one finds [8]

hext2 ¼ 16

5
c1

M3
$

R3 þ c2
R2

M2
$
þO

!
M4

$
R4 ;

R

M$

"
: (52)

As shown in Eq. (41), the term in the asymptotic expansion
of gtt (or h2) in the buffer zone that is proportional to R&3

gives us the tidal quadrupole moment, while the term
proportional to R2 gives us the tidally induced electric
quadrupole tidal tensor. Thus, we find that c1 is related to
QðtidÞ, while c2 is related to EðtidÞ.

The tidal apsidal constant can then be found by taking
the ratio of c1 and c2 [8],

kðtidÞ2 ¼ 8

5
C5 c1

c2

¼ 8

5
C5ð1& 2CÞ2½2þ 2Cðy& 1Þ & y(

) f2C½6& 3yþ 3Cð5y& 8Þ( þ 4C3

) ½13& 11yþ Cð3y& 2Þ þ 2C2ð1þ yÞ(
þ 3ð1& 2CÞ2½2& yþ 2Cðy& 1Þ( ln ð1& 2CÞg&1;

(53)

with y * R$h
0
2ðR$Þ=h2ðR$Þ. In the second equality, we

have rewritten c1;2 in terms of h2, its derivative and the NS
compactness.
We see then that the tidal apsidal constant only depends

on y, which simplifies the way one must solve Eq. (46).
First, we notice that Eq. (46) is a homogeneous equation
for h2, and thus, the integration constant B in Eq. (35)
only changes the solution h2 by a constant factor. Since
y / h02=h2 does not depend on this overall factor, it suffices
to solve Eq. (46) with an arbitrary test value for B, if one is
only interested in the tidal apsidal constant. We have
calculated the tidal apsidal constant, as well as the tidal
Love number for a sequence of stars with varying M$
and C. We have found that our results agree exactly with
Figs. 1 and 2 of Ref. [19].
Figure 8 shows the dimensionless Love number !!ðtidÞ as

functions of M$ and C. Observe that the !!ðtidÞ curves for
realistic EoSs approach each other as C increases, and
moreover, they approach the BH limit as C ! 0:5. Once
more, as before, the BH limit cannot be taken from the
sequence of NS considered, as there is no finite central
density that would lead to BH formation.

VII. I-LOVE-Q RELATIONS

Now that the moment of inertia, quadrupole moment and
Love numbers have been calculated, let us present the
universal I-Love-Q relations. We first show numerical
results and a fitting curve through these. Then, we obtain
analytic I-Love-Q relations for the n ¼ 0 and 1 polytropic
EoSs in the Newtonian limit.

A. Numerical results

Figure 9 shows universal relations between the dimen-
sionless quantities, !I, !Q, !!ðtidÞ and !!ðrotÞ for various EoSs.
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FIG. 8 (color online). Dimensionless tidal Love number !!ðtidÞ as functions ofM$ (left) and C (right) for various EoSs. The horizontal
dashed line at !!ðtidÞ ¼ 2:66) 103 corresponds to a star with M$ ¼ 1M+; the region below this line corresponds to stars with larger
mass and compactness. Observe that the !!ðtidÞ curves for realistic EoSs approach each other as C increases, and moreover, approaches

the BH limit !!ðtidÞ
BH ¼ 0 as C ! 0:5.

3In some references, !ðtidÞ is called the tidal deformability and
the word ‘‘tidal Love number’’ is reserved for kðtidÞ2 .
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Could there be exotic massive objects with large ?Λ

Arvanitaki et al 11, Baryakhtar et al 15

Boson stars 
(compact, stationary configurations 

 of scalar field bound by gravity)

BHs with scalar clouds

Sanchis-Gual et al. 22, Leibling et al 



General GW search pipeline
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∼ 105 triggers ∼ 100 triggersConvolve LVK  
data with 
 templates 

Perform 
PE (param. 
estimation)

Rank triggers based 
on coherence of

detectors

Flanagan, Hinderer [0709.1915], Binnington, Poisson [0906.1366], Damour, Nagar [0906.0096] 

Tidal Imprints on Waveforms

Merging objects with large Love numbers can lead to significant phase shifts 
in waveforms. The leading tidal parameter in the phase is

<latexit sha1_base64="45hZeiAzyg0MCx2AANhjpX5wMQE="></latexit>

⇤̃ =
16
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(m1 + 12m2)m4
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2⇤2

(m1 +m2)5

Phase shift in inspiral waveform 
(5PN order onwards)

All matched filtering pipelines assume use black hole templates 
and might miss such objects

(when )Λ ≠ 0
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Current BBH template banks can miss such objects
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Figure 1: The ability of a standard BBH template bank to recover signals with large tidal Love

numbers. In particular, we show the e↵ectualness of a BBH template bank for the inspiral-only

signal from binaries with large Love numbers as a function of binary total mass M and e↵ective

tidal parameter ⇤̃; see (2.2). We find that the e↵ectualness drops significantly for ⇤̃ & 103,

meaning that searches conducted with BBH template banks are much less sensitive to putative

signals in this region of the parameter space. In this paper, we therefore perform a search using a

template bank which includes the e↵ect of ⇤̃. Note that we allow for spins in the BBH template

model — this means that the observed reduction in e↵ectualness due to ⇤̃ cannot be recouped

by allowing for spins.

In Fig. 1 we demonstrate the loss in e↵ectualness of a BBH waveform model to signals with

large Love numbers as a function of the binary total mass, M , and the mass-weighted tidal

parameter, ⇤̃, which depends on the individual component Love numbers; see (2.2) below. We

compute the e↵ectualness for total masses 7M� < M < 40M�, as this reflects the range that

we will consider in our search. We find that for signals with ⇤̃ . 103, a high e↵ectualness of

" > 0.97 is achieved (this is equivalent to retaining "3 > 0.9 of sensitive volume, which is the

typical standard used in template bank construction). Since the ⇤̃ . 103 range encompasses

both BBHs and solar-mass BNS systems, which have ⇤ = 0 [32–36] and ⇤ . 103 [37, 38]

respectively, BBH templates are e↵ective at detecting both of these types of binary systems.

Note that there is a mild but noticeable loss in e↵ectualness for M & 25M�, which is attributed

to the additional nonlinear e↵ects near merger that are captured in IMRPhenomD but not in htidal.

Nevertheless, throughout the mass range considered, signals with ⇤̃ & 103 would likely be missed

by BBH template banks. Since objects which are less compact than black holes and neutron stars

naturally fall within the ⇤̃ & 103 parameter space, Fig. 1 raises the intriguing possibility that we

might have missed a wider class of new signals in the LIGO-Virgo data simply because we have

not been using the right waveforms to detect them. Although model-independent burst search

pipelines exist [56–58], they are ine↵ective at detecting long-duration signals which contain many

orbits in band.

3

Frac. SNR recovered
using BBH templates
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Current BBH template banks can miss such objects
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Figure 1: The ability of a standard BBH template bank to recover signals with large tidal Love

numbers. In particular, we show the e↵ectualness of a BBH template bank for the inspiral-only

signal from binaries with large Love numbers as a function of binary total mass M and e↵ective

tidal parameter ⇤̃; see (2.2). We find that the e↵ectualness drops significantly for ⇤̃ & 103,

meaning that searches conducted with BBH template banks are much less sensitive to putative

signals in this region of the parameter space. In this paper, we therefore perform a search using a

template bank which includes the e↵ect of ⇤̃. Note that we allow for spins in the BBH template

model — this means that the observed reduction in e↵ectualness due to ⇤̃ cannot be recouped

by allowing for spins.

In Fig. 1 we demonstrate the loss in e↵ectualness of a BBH waveform model to signals with

large Love numbers as a function of the binary total mass, M , and the mass-weighted tidal

parameter, ⇤̃, which depends on the individual component Love numbers; see (2.2) below. We

compute the e↵ectualness for total masses 7M� < M < 40M�, as this reflects the range that

we will consider in our search. We find that for signals with ⇤̃ . 103, a high e↵ectualness of

" > 0.97 is achieved (this is equivalent to retaining "3 > 0.9 of sensitive volume, which is the

typical standard used in template bank construction). Since the ⇤̃ . 103 range encompasses

both BBHs and solar-mass BNS systems, which have ⇤ = 0 [32–36] and ⇤ . 103 [37, 38]

respectively, BBH templates are e↵ective at detecting both of these types of binary systems.

Note that there is a mild but noticeable loss in e↵ectualness for M & 25M�, which is attributed

to the additional nonlinear e↵ects near merger that are captured in IMRPhenomD but not in htidal.

Nevertheless, throughout the mass range considered, signals with ⇤̃ & 103 would likely be missed

by BBH template banks. Since objects which are less compact than black holes and neutron stars

naturally fall within the ⇤̃ & 103 parameter space, Fig. 1 raises the intriguing possibility that we

might have missed a wider class of new signals in the LIGO-Virgo data simply because we have

not been using the right waveforms to detect them. Although model-independent burst search

pipelines exist [56–58], they are ine↵ective at detecting long-duration signals which contain many

orbits in band.

3

Frac. SNR recovered
using BBH templates

We target this 
regime in our search
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Figure 9: We use our null detection to put constraints on the merger rates of binaries with

large ⇤̃. Using the IFAR of our most significant event, we derive a 90% CL upper limit on the

merger rate as a function of detector-frame chirp mass and the leading-order tidal parameter of

the binary (cf. the loudest event method [124]). The upper-right region is not colored as it is

beyond the current extent of our template banks.

where a correction factor of (128/25)1/2 = 2.26 to the horizon distance is included to take into

account the e↵ect of averaging over the detectors’ angular response, the binary orbital orientation,

and GW polarization angle [125]. Since the three LIGO-Virgo observing runs have di↵erent

characteristic noise curves and coincident observing periods, we compute hV T ii separately for

each run and sum them to obtain the total volume-time.

Figure 9 shows the approximate 90% confidence upper limit for the exotic binary merger rate,

which fall in the ⇠ 1� 300 Gpc�3 yr�1 range depending on binary parameters. For comparison,

the merger rates of known BBHs in the same chirp mass range are approximately R ⇠ 1 � 50

Gpc�3 yr�1 [126]. The constraints become stronger as we move from small to large values of

M because the putative signal would have been louder. In particular, due to the ⇢ / M
5/6

scaling in (5.2) the constraint scales as R90 / M
�15/6. On the other hand, the constraints

become weaker as we move from smaller to larger values of ⇤̃ as the cuto↵ frequency of the

waveform model decreases with increasing ⇤̃. Systems with larger values of ⇤̃ therefore lead to

smaller amounts of SNR integrated in the data and correspondingly a smaller sensitive volume.

Although the analytic scaling between R90 and ⇤̃ is less straight-forward to derive, we deduce

empirically R90 / ⇤̃1/10 to be a good approximation. The upper limit rate is therefore much

more sensitive to scalings with M than with ⇤̃. Finally it is interesting that, despite the crude

estimate (5.3), our rate constraints of R90 ⇠ 102 Gpc�3 yr�1 at M = 3M� and ⇤̃ ! 0 is broadly

consistent with the rate constraints obtained for subsolar-mass BBHs which were computed with

full injection campaigns involving the real data [121, 123].

29

Constraints on merger rate
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Summary
• We showed a efficient method of 

searching with GW higher harmonics

• Searched in O3 data and found 
new mergers

(only more expensive w.r.t (2,2) search)3 ×
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• We also performed a search for 
high-  exotic objects with null resultsΛ
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5

TABLE I. New events in our search pastro > 0.5. The PE section shows results from parameter estimation runs with the
IMRPhenomXPHM model. The errorbars correspond to 90% uncertainties and ln Lmax denotes the maximum log likelihood.
Note that the PE results here incorporate precession and use Virgo data when available, unlike our search. ⇢2H,L denote the
SNR of the search triggers in the Hanford and Livingston detectors. We also perform PE separately with 22-only aligned-spin
waveforms and report the change in evidence when aligned-spin HM and precession are iteratively included.

Sr.
Event Bank

PE � ln(evidence)
⇢2H ⇢2L

IFAR (yr)
pastro

No. msrc

1 (M�) msrc

2 (M�) �e↵ z ln Lmax HM HM+P per bank overall

1 GW190524 134109 10,0 61+21

�14
43+18

�15
0.5+0.4

�0.6 1.4+0.7
�0.6 34.2 -0.49 -0.24 23.3 44.4 5.9 0.74 0.89

2 GW191113 103541 9,0 80+30

�30
23+22

�7
0.7+0.2

�0.2 0.9+0.7
�0.4 38.6 1.21 1.8 36.4 39.1 5.8 0.71 0.91

3 GW190806 033721 8,1 61+23

�16
38+17

�13
0.79+0.18

�0.44 1.6+0.7
�0.7 27.7 -0.17 -0.07 35.8 33.8 6.4 0.68 0.89

4 GW190615 030234 10,0 64+18

�12
50+15

�12
0.1+0.3

�0.5 0.9+0.3
�0.4 44.7 0.01 -0.5 24.1 50.5 3.1 0.35 0.82

5 GW190604 103812 12,0 130+40

�40
35+17

�10
0.94+0.05

�0.15 1.6+0.7
�0.7 27.2 3.83 4.09 29.6 38.1 2.1 0.21 0.75

6 GW200210 100022 9,0 64+23

�20
40+20

�20
0.83+0.16

�0.83 1.5+0.9
�0.6 32.2 -0.26 0.44 29.2 35.9 1.8 0.19 0.74

7 GW190605 025957 13,0 110+40

�20
90+30

�30
0.7+0.3

�0.6 1.5+0.7
�0.7 40.3 -0.3 -0.29 43.0 46.5 2.0 0.15 0.69

8 GW200304 172806 8,1 80+30

�30
35+28

�17
0.61+0.18

�0.84 1.2+0.7
�0.5 31.0 2.0 3.74 40.8 28.1 1.5 0.14 0.69

9 GW190530 030659 4,2 33+17

�12
19+7

�7
0.5+0.2

�0.3 0.60+0.22
�0.19 34.7 1.31 2.63 34.5 36.0 2.3 0.12 0.67

10 GW190708 211916 8,1 60+20

�20
28+15

�11
0.6+0.3

�0.3 1.0+0.6
�0.4 32.6 3.04 4.09 42.1 32.8 0.89 0.086 0.60

11 GW190530 133833 12,0 80+40

�20
60+26

�20
0.3+0.5

�0.9 1.3+0.8
�0.6 26.6 -0.14 0.1 38.2 31.7 0.80 0.084 0.59

12 GW190907 111633 12,0 100+30

�30
70+30

�20
0.93+0.06

�0.19 1.5+0.8
�0.6 31.0 -0.07 0.54 27.1 42.3 0.75 0.077 0.58

13 GW200301 211019 1,2 19+7

�3
14+4

�3
�0.2+0.4

�0.3 0.37+0.18
�0.15 33.4 -0.0 0.08 36.5 38.3 2.2 0.069 0.52

TABLE II. Same as Table I but for events with pastro > 0.5 which overlap with those first reported in the IAS 22-only searches:
[10, 35].

Sr.
Event Bank

PE � ln(evidence)
⇢2H ⇢2L

IFAR (yr)
pastro

No. msrc

1 (M�) msrc

2 (M�) �e↵ z ln Lmax HM HM+P per bank overall

1 GW190711 030756 7,1 56+35

�17
24+10

�8
0.1+0.4

�0.5 0.44+0.25
�0.17 49.4 2.73 2.1 32.5 68.9 581 41.5 1.00

2 GW190707 083226 7,1 50+16

�11
35+11

�10
�0.2+0.5

�0.6 0.6+0.4
�0.2 38.9 1.04 1.44 49.4 40.2 3.5 0.28 0.79

3 GW190818 232544 8,1 80+30

�20
33+18

�13
0.7+0.2

�0.3 0.9+0.5
�0.3 36.5 1.49 1.64 47.9 35.8 3.2 0.34 0.82

4 GW190906 054335 7,1 36+12

�8
25+8

�7
0.1+0.4

�0.5 0.9+0.4
�0.3 30.0 0.35 0.73 27.3 43.6 1.5 0.12 0.66


