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Motivation
• Ejecta of binary neutron star merger


• Collective oscillations can lead to significant flavor 
conversion of neutrinos in the ejecta, potentially 
altering the overall composition and affecting 
nucleosynthesis processes.


• Help constraint neutron star EOS.

• Neutrinos from neutron star mergers can 

potentially offer a complimentary perspective to 
gravitational wave observations


• Core-collapse supernova

• Enhance or hinder the explosion?

• Determining Neutrino Properties, such as their 

mass hierarchy, CP-violation, possible sterile 
neutrino and interactions beyond the standard 
model (dark matter).

Theory:

1302.2374

1903.00022

2306.14982


“Classical”:

Treated as radiation energy transportation

->moment-based methods


“Quantum”:

Oscillation+QED effects: absorption and 
emission, pair production and annihilation, 
nucleon-nucleon bremsstrahlung radiation, 
and neutrino-neutrino pair annihilation and 
scattering.

->quantum kinetics


Simulation:

2206.04098

2212.01409

2305.11207



Neutrino Oscillation 
• Theory

Neutrinos have different flavors and masses, the 
flavor and mass state of neutrinos are connected by





where the  is the mixing matrix (i.e. if not 
diagonal, the neutrinos are mixed) and  is the 
massive state. The massive state are eigenstates of 
the Hamiltonian





with energy eigenvalues


𝜈𝛼⟩ = ∑
𝑘

￼𝑈∗
𝛼𝑘 𝜈𝑘⟩ (𝛼 = 𝑒, 𝜇, 𝜏)

𝑈∗
𝛼𝑘

𝜈𝑘⟩

𝐻 𝜈𝑘⟩ = 𝐸𝑘 𝜈𝑘⟩

𝐸𝑘 = →𝑝
2

+ 𝑚2
𝑘

The Schrödinger equation





implies that the massive neutrino states evolve in time as 
plane waves





Let us consider now a flavor state  which describes 
a neutrino created with a definite flavor  at time . 
The time evolution of this state is given by


𝑖
d
d𝑡

𝜈𝑘(𝑡)⟩ = 𝐻 𝜈𝑘(𝑡)⟩

𝜈𝑘(𝑡)⟩ = 𝑒−𝑖𝐸𝑘𝑡 𝜈𝑘⟩
𝜈𝛼(𝑡)⟩

𝛼 𝑡 = 0

𝜈𝛼(𝑡)⟩ = ∑
𝑘

￼𝑈∗
𝛼𝑘𝑒−𝑖𝐸𝑘𝑡 𝜈𝑘⟩



Neutrino Oscillation 
• Theory

Using the unitarity relation





the massive states can be expressed in terms of 
flavor states . So, we obtain





Hence the probability of  transition as a 
function of time is, then, given by





𝑈†𝑈 = 𝟏 ⟺ ∑
𝛼

￼𝑈∗
𝛼𝑘𝑈𝛼𝑗 = 𝛿𝑗𝑘

𝜈𝑘⟩ = ∑𝛼
￼𝑈𝛼𝑘 𝜈𝛼⟩

𝜈𝛼(𝑡)⟩ = ∑
𝛽=𝑒,𝜇,𝜏

￼(∑
𝑘

￼￼𝑈∗
𝛼𝑘𝑒−𝑖𝐸𝑘𝑡𝑈𝛽𝑘) 𝜈𝛽⟩
𝜈𝛼 → 𝜈𝛽

𝑃𝜈𝛼→𝜈𝛽
(𝑡) ≡ ⟨𝜈𝛽 ∣ 𝜈𝛼(𝑡)⟩ = 𝐴𝜈𝛼→𝜈𝛽

(𝑡)
2

= ∑
𝑘,𝑗

￼𝑈∗
𝛼𝑘𝑈𝛽𝑘𝑈𝛼𝑗𝑈∗

𝛽𝑗𝑒
−𝑖(𝐸𝑘 − 𝐸𝑗)𝑡

For relativistic neutrinos, , such that 

, where . Therefore, the 

transition probability can be approximated by





Since neutrinos are ultra-relativistic particles, which travel 
at about the speed of light, we can approximately write 

, leading to


𝐸𝑘 ≃ 𝐸 +
𝑚2

𝑘

2𝐸

𝐸𝑘 − 𝐸𝑗 ≃
Δ𝑚2

𝑘𝑗

2𝐸
𝐸 = |→𝑝 |

𝑃𝜈𝛼→𝜈𝛽
(𝑡) = ∑

𝑘,𝑗
￼𝑈∗

𝛼𝑘𝑈𝛽𝑘𝑈𝛼𝑗𝑈∗
𝛽𝑗exp(−𝑖

Δ𝑚2
𝑘𝑗𝑡

2𝐸 ) .

𝑡 = 𝐿

𝑃𝜈𝛼→𝜈𝛽
(𝐿, 𝐸) = ∑

𝑘,𝑗
￼𝑈∗

𝛼𝑘𝑈𝛽𝑘𝑈𝛼𝑗𝑈∗
𝛽𝑗exp(−𝑖

Δ𝑚2
𝑘𝑗𝐿

2𝐸 )



Neutrino Oscillation 
• Theory

This expression shows that the source-detector 
distance  and the neutrino energy  are the 
quantities depending on the experiment which 
determine the phases of neutrino oscillations





Sometimes it is convenient to write the probability 
as





𝐿 𝐸

Φ𝑘𝑗 = −
Δ𝑚2

𝑘𝑗𝐿
2𝐸

𝑃𝜈𝛼→𝜈𝛽
(𝐿, 𝐸) = ∑

𝑘
￼ 𝑈𝛼𝑘

2
𝑈𝛽𝑘

2
+ 2ℜ𝔢 ∑

𝑘>𝑗
￼𝑈∗

𝛼𝑘𝑈𝛽𝑘𝑈𝛼𝑗𝑈∗
𝛽𝑗exp(−2𝜋𝑖

𝐿
𝐿sc 

𝑘𝑗 ),

so that we can separate a constant term from the 
oscillating term, which is characterized by the oscillation 
lengths





The oscillation length  is the distance at which the 
phase becomes equal to .

𝐿osc
𝑘𝑗 =

4𝜋𝐸
Δ𝑚2

𝑘𝑗
.

𝐿osc 
𝑘𝑗
2𝜋



Neutrino Oscillation 
• Example 1

Now we just consider one example of neutrino 
oscillation which we mix two neutrino flavors  
and . Assume that the mixing matrix is





in which  is the mixing angle, with a value in the 
interval . Therefore, the probability 
of  transitions with  can be easily 
derived 


𝛼
𝛽

𝑈 = ( cos𝜗 sin𝜗
−sin𝜗 cos𝜗)

𝜗
0 ≤ 𝜗 ≤ 𝜋/22

𝜈𝛼 → 𝜈𝛽 𝛼 ≠ 𝛽

𝑃𝜈𝛼→𝜈𝛽
(𝐿, 𝐸) =

1
2

sin22𝜗 1 − cos( Δ𝑚2𝐿
2𝐸 ) = sin22𝜗sin2( Δ𝑚2𝐿

4𝐸 ) (𝛼 ≠ 𝛽) .



Neutrino Oscillation 
• Example 2

The matter potential in the local comoving frame 
is




here we only consider electron's matter effect 
since in the astrophysical systems of interest, 
electron is the only lepton with a significant 
abundance.

We assume that the electron number density at 
the center of sun is  and the 
density is decaying with the form:





The energy of the neutrinos are set to be 

𝑉matter  = 2 ⋅ 𝐺𝐹 ⋅ 𝑛𝑒(𝑥),

𝑛𝑒0 = 5.9 × 1029 m−3

𝑛𝑒(𝑥) = 𝑛𝑒0(1 −
𝑥

𝑅sun ) .

1 × 106𝑒𝑉 . What if we want to study a system of 
neutrinos instead of just 1?



Kinetic Theory 
• BBGKY Formalism 

Bogoliubov–Born–Green–Kirkwood–Yvon 
hierarchy (BBGKY) describes the dynamic 
statistics for large system of interacting 
particles through their distribution.





 is the collision term,  are 4-
velocity and 4-normal vector, respectively.

Under the assumption, the neutrino self-
interaction is treated as an interaction 
between each neutrino and their mean-field 
neutrino medium in its vicinity.

𝑝𝜇 𝜕𝐹
𝜕𝑥𝜇

+
𝑑𝑝𝑖

𝑑𝜏
𝜕𝐹
𝜕𝑝𝑖

= − 𝑝𝜇𝑢𝜇𝑆 + 𝑖𝑝𝜇𝑛𝜇[𝐻, 𝐹 ]

𝑆 𝑢𝜇 and 𝑛𝜇

Similar as the quantum mechanical system in the 
Heisenberg picture, where the density operator  
evolves as:





The Hamiltonian operator is often decomposed as


𝐹

𝑑𝐹
𝑑𝑡

= − 𝑖[𝐻, 𝐹 ]

𝐻 = 𝐻vacuum  + 𝐻matter  + 𝐻neutrino  .

Assuming non-relativistic, isotropy, no drift and force terms.



Kinetic Theory 
• Hamiltonians

The vaccum Hamiltonian





in which





is the Hamiltonian in the neutrino mass basis, the unitary matrix  describes the mixing between 
the flavor and mass bases. Here we use the most commonly used Pontecorvo-Maki-
NakagawaSakata (PMNS) matrix, which is defined as


𝐻vacuum  = 𝑈𝐻(𝑚)
vacuum 𝑈

†,

𝐻(𝑚)
vacuum  =

1
2𝐸

0 0 0
0 Δ𝑚2

21 0
0 0 Δ𝑚2

31

,

𝑈

𝑈 = 𝑈PMNS =
1 0 0
0 𝑐23 𝑠23

0 −𝑠23 𝑐23

𝑐13 0 𝑠13𝑒−𝑖𝛿CP

0 1 0
−𝑠13𝑒𝑖𝛿CP 0 𝑐13

𝑐12 𝑠12 0
−𝑠12 𝑐12 0

0 0 1
.

 3 mixing angle + 1 CP phase.3  ×  3 − 4 − 1 = 4 𝑑 . 𝑜 . 𝑓 .   =



Kinetic Theory 
• Hamiltonians

Charged-current interaction




The mean field





 Hamiltonian (assuming isotropic charged lepton distribution)


𝐻𝐶𝐶 =
𝐺𝐹

2 ∫ 𝑑3→𝑥 [‾𝜙𝑒𝛾𝜇(1 − 𝛾5)𝜙𝜈𝑒], [‾𝜙𝜈𝑒
𝛾𝜇(1 − 𝛾5)𝜙𝑒]

Γ𝜈𝑒(𝜌𝑒) = 𝐺𝐹

2
∑h𝑒,h′￼𝑒

￼∫ 𝑑3→𝑝
(2𝜋)32𝐸𝑝

∫ 𝑑3→𝑝
′￼

(2𝜋)32𝐸𝑝′￼

 (2𝜋)3𝛿3(→𝑝 +
→
𝑘 − →𝑝

′￼
−

→
𝑘

′￼)
[‾𝑢𝜈𝑒(→

𝑘 , h𝜈𝑒)𝛾𝜇(1 − 𝛾5)𝑢𝜈𝑒(→
𝑘

′￼
, h′￼𝜈𝑒)]

[‾𝑢𝑒(→𝑝 , h𝑒)𝛾𝜇(1 − 𝛾5)𝑢𝑒(→𝑝
′￼
, h′￼𝑒)]

⟨𝑎†
𝑒 (→𝑝 , h)𝑎𝑒(→𝑝

′￼
, h′￼)⟩ .



Kinetic Theory 
• Hamiltonians

Neutral-current interaction




with  or . The mean-field  with 





 Hamiltonian


𝐻𝑁𝐶 =
𝐺𝐹

2 2 ∫  𝑑3→𝑥 [‾𝜙𝜈𝑒
𝛾𝜇(1 − 𝛾5)𝜙𝜈𝑒], [‾𝜙𝜈𝑦

𝛾𝜇(1 − 𝛾5)𝜙𝜈𝑦]
𝜈𝑦 = 𝜈𝑒, 𝜈𝜇 𝜈𝜏 Γ𝜈𝛼,𝜈𝛽(𝜌𝜈) 𝜈𝛼, 𝜈𝛽 = 𝜈𝑒, 𝜈𝜇, 𝜈𝜏

Γ𝜈𝛼,𝜈𝛽(𝜌𝜈) = 𝐺𝐹

2 2
∫   𝑑3→𝑝

(2𝜋)32𝐸𝑝
∫   𝑑3→𝑝

′￼

(2𝜋)32𝐸𝑝′￼

 (2𝜋)3𝛿3(→𝑝 +
→
𝑘 − →𝑝

′￼
−

→
𝑘

′￼)
[‾𝑢𝜈𝛽(→

𝑘 , h𝛽)𝛾𝜇(1 − 𝛾5)𝑢𝜈𝛼(→
𝑘

′￼
, h′￼𝛼)]

[‾𝑢𝜈𝛼(→𝑝 , h𝛼)𝛾𝜇(1 − 𝛾5)𝑢𝜈𝛽(→𝑝
′￼
, h′￼𝛽)]

⟨𝑎†
𝜈𝛼(→𝑝 , h𝛼)𝑎𝜈𝛽(→𝑝

′￼
, h′￼𝛽)⟩



Kinetic Theory 
• Examples

Analytical:





Thus, we expect the distribution function 
values to follow





Input:

•  eV

• 

• Two flavors with 

𝑃𝑇(𝑡) = sin2(2𝜃12)sin2( 𝑐4Δ𝑚2
12𝑡

4𝐸ℏ )

𝑓𝑒𝑒(𝑡)   = [1 − 𝑃𝑇(𝑡)]𝑓𝑒𝑒(0) + 𝑃𝑇(𝑡)𝑓𝜇𝜇(0)

𝑓𝜇𝜇(𝑡)   = [1 − 𝑃𝑇(𝑡)]𝑓𝜇𝜇(0) + 𝑃𝑇(𝑡)𝑓𝑒𝑒(0)

𝐸 = 5 × 106

𝜃12 = 𝜋/6
Δ𝑚2

12 = 7.53 × 10−5 eV



Kinetic Theory 
• Examples

Analytical:

Mixing angle and mass squared difference 
are replaced by effective values of





where  is the matter 
potential. We assume Mikheyev-Smirnov-
Wolfenstein (MSW) resonance 

Input:

•  eV

• Two flavors with 

sin2(2~𝜃12) =
sin2(2𝜃12)

sin2(2𝜃12) + 𝐶2

Δ~𝑚2
12 = Δ𝑚2

12 sin2(2𝜃12) + 𝐶2

𝐶 = cos(2𝜃12) − 2𝑉𝐸
Δ𝑚2

12𝑐4

𝑉 = 2𝐺𝐹ℏ3𝑐3𝑛𝑒

(𝐶 = 0) .

𝐸 = 5 × 106

Δ𝑚2
12 = 7.53 × 10−5 eV



Kinetic Theory 
• Examples

Bipolar oscillations occur for pure electron 
anti/neutrinos and for pure anti/muon 
neutrinos. If we assume the distribution of 
anti/neutrinos are isotropic




Input:

•  eV

• Two flavors with 

• Initial distribution:  

• Background matter density 

• 


𝐻neutrino  = 0

𝐸 = 5.64 × 1010

Δ𝑚2
12 = 7.53 × 10−5 eV

𝑓𝜇𝜇 = ‾𝑓𝜇𝜇 = 1
  = 0

𝜃12 = 0.01



Kinetic Theory 
• Examples

Bipolar oscillations occur for pure electron 
anti/neutrinos and for pure anti/muon 
neutrinos. If we assume the distribution of 
anti/neutrinos are isotropic


Input:

•  eV

• Two flavors with 

• Initial distribution:  

• Background matter density 

• 


𝐻neutrino  =
Δ𝑚2

12𝑐4

2𝐸
(𝑓 − ‾𝑓∗) .

𝐸 = 5.64 × 1010

Δ𝑚2
12 = 7.53 × 10−5 eV

𝑓𝜇𝜇 = ‾𝑓𝜇𝜇 = 1
  = 0

𝜃12 = 0.01



Numerical Setup 
• Angular Discretization

To study the neutrino propagation in a space 
with anisotropic collision, we need angular 
discretization, which is usually implemented 
on the distribution function to separate the 
radial and angular parts. For example, in our 
case, we can simply consider





where the  would be matrix element of the 
density matrix we defined previously. Thus, 
the equation we have would be:


𝐹(𝑡, 𝑥𝑖, Ω) =
𝑁−1
∑

𝐴=0
￼𝐹𝐴(𝑡, 𝑥𝑖)Ψ𝐴(Ω): = 𝐹𝐴Ψ𝐴,

𝐹

Ψ𝐴
𝜕𝐹𝐴

𝜕𝑡
+ Ω𝑖Ψ𝐴

𝜕𝐹𝐴

𝜕𝑟𝑖
= − 𝑖[𝐻𝐴Ψ𝐴, 𝐹𝐴Ψ𝐴] .




Multiplying by  and integrating over 
 with respect to , we obtain





where





are the mass, stiffness and source matrices 
respectively. 

Ψ𝐴
𝜕𝐹𝐴

𝜕𝑡
+ Ω𝑖Ψ𝐴

𝜕𝐹𝐴

𝜕𝑥𝑖
= ℂ[𝐹 ],

Ψ𝐵 = Ψ𝐵
𝕊2 𝑑Ω

𝑀𝐵
𝐴

𝜕𝐹𝐴

𝜕𝑡
+ 𝑆𝑖𝐵

𝐴
𝜕𝐹𝐴

𝜕𝑥𝑖
= 𝕊𝐵[𝐹 ],

𝑀𝐵
𝐴 =

𝕊2

￼Ψ𝐵Ψ𝐴𝑑Ω,  

𝑆𝑖𝐵
𝐴 =

𝕊2

￼Ω𝑖Ψ𝐵Ψ𝐴𝑑Ω,  𝕊𝐵[𝐹 ] =
𝕊2

￼Ψ𝐵ℂ[𝐹 ]𝑑Ω .



Numerical Setup 
• Angular Discretization

The simplest geodesic grid consists of 12 angular points which are vertices of a regular 
icosahedron, the Cartesian coordinates of which are given by





Here  is the golden radio. 

1
1 + 𝜑2

(0, ± 1, ± 𝜑),  
1

1 + 𝜑2
( ± 1, ± 𝜑, 0),  

1
1 + 𝜑2

( ± 𝜑, 0, ± 1),  𝜑 =
1 + 5

2
.

𝜑

Credit: 
Bhattacharyya

(2022)



Numerical Setup 
• Angular Discretization

We have firstly:





The values of  can be either taking from 
theoretical assumptions or calculated by 
experimentally measured values of 


Given also the Hamiltonian for matter.


𝐻vacuum  =

𝐻𝑣1
𝐻𝑣2

𝐻𝑣3

𝐻𝑣4
𝐻𝑣5

𝐻𝑣6

𝐻𝑣7
𝐻𝑣8

𝐻𝑣9

𝐻𝑣1−9

𝑈PMNS  .

𝐻matter  = 2𝐺𝐹

𝑛𝑒 − 𝑛‾𝑒 0 0
0 𝑛𝜇 − 𝑛‾𝜇 0
0 0 𝑛𝜏 − 𝑛‾𝜏

,

Note that they are just leading order terms from QFT 
calculation. Also note that here we assume the distribution 
of charged lepton and antilepton is isotropic, hence there 
is no angle dependence included. 
And the neutrino self-interaction Hamiltonian:





where the  are the matrix element of the angular 
discretized density matrix .

𝐻neutrino  = 2𝐺𝐹(1 − cos𝜃𝐴) ×

× Ψ𝐴

(𝑓𝐴
𝜈𝑒

− ‾𝑓
∗𝐴
‾𝜈 ) (𝑓𝐴

𝑒𝜇 − ‾𝑓
∗𝐴
𝑒𝜇 ) (𝑓𝐴

𝑒𝜏 − ‾𝑓
∗𝐴
‾𝑒𝑒 )

(𝑓𝐴
𝑒𝜇 − ‾𝑓

∗𝐴
𝑒𝜇 )

∗

(𝑓𝐴
𝜈𝜇

− ‾𝑓
∗𝐴
‾𝜈𝜇 ) (𝑓𝐴

𝜇𝜏 − ‾𝑓
∗𝐴
𝜇𝜏 )

(𝑓𝐴
𝑒𝜏 − ‾𝑓

∗𝐴
𝑒𝜏 )

∗

(𝑓𝐴
𝜇𝜏 − ‾𝑓

∗𝐴
𝜇𝜏 )

∗

(𝑓𝐴
𝜈𝜏

− ‾𝑓
∗𝐴
‾𝜈𝜏 )

.

𝑓𝐴
𝑥

𝐹𝐴



Summary

• Neutrino Oscillations


• Quantum Kinetics Theory


• Numerical Scheme



Questions welcome

Thank  you  for  your attentions!
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Supplementary materials

.
𝜌𝜈 =

⟨𝑎†
𝜈𝛼,𝑖𝑎𝜈𝛼,𝑖⟩ ⟨𝑎†

𝜈𝛽,𝑗𝑎𝜈𝛼,𝑖⟩ ⟨𝑎†
𝜈𝛾,𝑘𝑎𝜈𝛼,𝑖⟩

⟨𝑎†
𝜈𝛼,𝑖𝑎𝜈𝛽,𝑗⟩ ⟨𝑎†

𝜈𝛽,𝑗𝑎𝜈𝛽,𝑗⟩ ⟨𝑎†
𝜈𝛾,𝑘𝑎𝜈𝛽,𝑗⟩

⟨𝑎†
𝜈𝛼,𝑖𝑎𝜈𝛾,𝑘⟩ ⟨𝑎†

𝜈𝛽,𝑗𝑎𝜈𝛾,𝑘⟩ ⟨𝑎†
𝜈𝛾,𝑘𝑎𝜈𝛾,𝑘⟩



𝜙(→𝑥 ) = ∑h ￼∫ 𝑑3→𝑝

(2𝜋)32𝐸𝑝 [𝑎(→𝑝 , h)𝑢→𝑝 ,h𝑒
𝑖→𝑝 ⋅→𝑥

+𝑏†(→𝑝 , h)𝑣→𝑝 ,h𝑒
−𝑖→𝑝 ⋅→𝑥 ]

The neutrinos and antineutrinos are related by CP symmetry, such that we have the 
following transformation rule:





When we consider the process of time evolution, we have:





𝜈𝛼
CP ‾𝜈𝛼,

𝜈𝛼 → 𝜈𝛽
CP ‾𝜈𝛼 → ‾𝜈𝛽,




in which  is the weak coupling constant, and  is the mass of the  bosons.

𝐺𝐹 ≡
𝑔2

4 2𝑀2
𝑊

𝑔 𝑀𝑊 𝑊



Weak Interaction

In a charged-current weak scattering process, a charged weak interaction involves the 
exchange of a bosons. For example, when a neutrino interacts with a nucleus 
in a neutrino detector, it can scatter off an atomic nucleus via a charged-current weak 
interaction, producing a charged lepton (an electron, muon or tau) and changing the 
quark flavor. The reaction can be represented as follows:





where  is the neutrino,  is the atomic nucleus,  is the charged lepton, and  is the 
recoiling nucleus.


In a neutral-current weak scattering process, the exchange of a  boson is involved. 
For example, when a neutrino interacts with an atomic nucleus in a neutrino detector, 
it can scatter off the nucleus via a neutral-current weak interaction, producing a 
recoiling nucleus and a neutrino of the same flavor. The reaction can be represented 
as follows:





𝑊 +, 𝑊 −

𝜈 + N → I + X,

𝜈 N 𝐼 X

Z

𝜈 + N → 𝜈 + X



Mean Field Approximation

Writing such an equation more explicitly, it reads




with




The mean-field potential is built up from a complete set of one-body density matrix 
components for particle , each contributing with the matrix element 

, with incoming (outgoing) single-particle states. 

𝑖𝜌̇1,𝑖𝑗 − [𝐻0(1) + Γ1(𝜌), 𝜌1]𝑖𝑗
= 0

Γ1,𝑖𝑗(𝜌) = ∑
𝑚𝑛

￼𝑣(𝑖𝑚,𝑗𝑛)𝜌2,𝑛𝑚 .

2𝜌2,𝑛𝑚

𝑣(𝑖𝑚,𝑗𝑛) = ⟨𝑖𝑚 𝑉12 𝑗𝑛⟩


