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Motivation

« Ejecta of binary neutron star merger

“Classical’:

* Collective oscillations can lead to significant flavor Treated as radiation energy transportation
conversion of neutrinos in the ejecta, potentially _>moment-based methods
altering the overall composition and affecting
nucleosynthesis processes. “Ouantum”:

* Help constraint neutron star EOS. Oscillation+QED effects: absorption and

* Neutrinos from neutron star mergers can emission, pair production and annihilation,
potentially offer a complimentary perspective to nucleon-nucleon bremsstrahlung radiation,
gravitational wave observations and neutrino-neutrino pair annihilation and

 Core-collapse supernova scattering.

* Enhance or hinder the explosion? ->quantum kinetics

* Determining Neutrino Properties, such as their

mass hierarchy, CP-violation, possible sterile Theory: Simulation:

neutrino and interactions beyond the standard 1302.2374 2206.04098

model (dark matter). 1903.00022 2212.01409
2306.14982 2305.11207
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Neutrino Oscillation

* Theory

Neutrinos have different flavors and masses, the
flavor and mass state of neutrinos are connected by

va>=zk:

T vk> (x =e, U, 7)

where the U, is the mixing matrix (i.e. if not
diagonal, the neutrinos are mixed) and ‘ vk> is the

massive state. The massive state are eigenstates of
the Hamiltonian

H‘vk> =Ek‘vk>

with energy eigenvalues

Ek—\/p +mk

The Schrodinger equation

z%‘vk(t» = H|v®))

implies that the massive neutrino states evolve in time as
plane waves
Vi)

() = 7B
Let us consider now a flavor state

va(t)> which describes

a neutrino created with a definite flavor « at time t = 0.
The time evolution of this state is given by

V() = X Uie B |y, )
k
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Neutrino Oscillation

* Theory

Using the unitarity relation

=0y

U'U=1< Z U*U,

the massive states can be exp

flavor states ‘vk> = Z U
a

W)= % <z U:ke-"Ekaﬂk>\vﬂ>
p=e,u,t k

ressed in terms of
va>. So, we obtain

Hence the probability of v, — v, transition as a
function of time is, then, given by

P, 0= <vﬂ | va(t)> -

A0

2

AmkjL
k.j

2
m
For relativistic neutrinos, E, ~ E + ﬁ, such that

Amk

E, - E ~ , where £ = | p | . Therefore, the

transition probability can be approximated by

Aka
P, (1) = Z UpUp Uy Ugiexp| — :

2F

Since neutrinos are ultra-relativistic particles, which travel
at about the speed of light, we can approximately write
t = L, leading to

- 2E
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Neutrino Oscillation

* Theory

This expression shows that the source-detector so that we can separate a constant term from the
distance L and the neutrino energy E are the oscillating term, which is characterized by the oscillation
quantities depending on the experiment which lengths
determine the phases of neutrino oscillations ArE
0OSC __
2 ki = :

O, =— Ak T Amg

Y 2E _ . . .

The oscillation length L,?jsc is the distance at which the

Sometimes it is convenient to write the probability phase becomes equal to 27.
as

P,_,(LLE)y=%
k

Ve Vg

Uak

2 2 . N . L
‘Uﬂk| +2Re kZ UakUﬁkUajUﬂJeXP<_2”’ s¢ >
>j
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Neutrino Oscillation
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« Example 1
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Neutrino Oscillation

« Example 2
With matter effect (N, = 5.9¢ + 29)

LA |

The matter potential in the local comoving frame 1.0

is

Vmatter = \/5 G n(x),

here we only consider electron's matter effect

since in the astrophysical systems of interest,

electron is the only lepton with a significant

abundance.

We assume that the electron number density at

the center of sun is n,; = 5.9 X 10 m=3 and the

density is decaying with the form: | | |
X 0 20000 40000 60000

Distance from Sun center (m)

081
0.6

0.4}

—

S

o
1

eutrino flavor percentages

N

—

—

.

—_—

S
T

n(x) =ny,| 1-—
Rsun
The energy of the neutrinos are set to be

1 X 10%V. What if we want to study a system of
neutrinos instead of just 1? fa PennState



Kinetic Theory

* BBGKY Formalism

Bogoliubov—Born—Green—Kirkwood—Yvon Similar as the quantum mechanical system in the
hierarchy (BBGKY) describes the dynamic Heisenberg picture, where the density operator F
statistics for large system of interacting evolves as:
particles through their distribution. JF

w8 AP OF i S+ iptn [H, F] — =—ilH, F]
Pooxn " Tar gpi P TP dt
S'is the collision term, u, and n, are 4- The Hamiltonian operator is often decomposed as

velocity and 4-normal vector, respectively.
Under the assumption, the neutrino self-
interaction is treated as an interaction
between each neutrino and their mean-field
neutrino medium in its vicinity.

H = Hyaeyum + Hmatter + Hpeutrino -

Assuming non-relativistic, isotropy, no drift and force terms.
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Kinetic Theory

e Hamiltonians

The vaccum Hamiltonian

H vacuum — = UHU UT

vacuum
in which

(0 0 0 )
) _ Lo Am3 0

vacuum 2E ’

is the Hamiltonian in the neutrino mass basis, the unitary matrix U describes the mixing between
the flavor and mass bases. Here we use the most commonly used Pontecorvo-Maki-
NakagawaSakata (PMNS) matrix, which is defined as

1 0 0] ¢ 0 spe|[e, s, O]
U — UPMNS — 0 c23 S23 0 1 O _512 C12 O
0

—Shq C
3 x3-4—-1=4d.o. 21‘3 : =23—‘% llanIHQ angle +1 Cf’l?)hase. @ %ennState



Kinetic Theory

e Hamiltonians

Charged-current interaction

Hee = %[fﬂ? [‘?’en(l - 3’5)¢VJ, [qbvey”(l - 75)4%]

The mean field /
r,(s.) = iy
ve\Pe) = heshe (277)3215 (27)32E,

(27:)353(7} +K-TF - 73)
h

— > -’
(1)
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Kinetic Theory

e Hamiltonians

Neutral-current interaction

Hyc = ZC\;/FE " X [c?ﬁven,(l — Vs)(ﬁve]a [(Zvyi/”(l - 75)¢vy]

with v, = v,, v, or v.. The mean-field I, ( pv) with v, vy = v, v, v

7 a’ uw vt
r ( ) Gr I d3p I d3p
VarVp\F'V 2\/5 (275)32Ep (27:)32Ep/

<a§a<7)>, ha> avﬂ<7)> , h/’,> > "‘o,’ PennState



Kinetic Theory

([
Examples Vaccum
"25‘{1" ANAARAAAA]
Analytical: S
4N 2 -
cTAmist e S
P(t) = sin*(20,,)sin’ 12 — 1.0 {
(1) (26),) < 1ER =
Thus, we expect the distribution function ' TU: AR U v,

values to follow
1079 F

o) = [1= Pr0] o O + P01, 0) =
fﬂﬂ(t) = [1 o PT(t)] fﬂM(O) + PT(t)fee(O) - 105k

Input: N T S S
e E=5%10%eV 0 2 4 | .6

« 0,,=7/6 t (ms)

« Two flavors with Am122 =7.53x107° eV
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Kinetic Theory

« Examples

MSW resonance

A A A

Pa— | .

u v
?' .

Analy-tical- 1.2 _ | ' ' / ' v ' ‘. N [ v A i
Mixing angle and mass squared difference ?; [ '" ]
are replaced by effective values of = 1.0F - 1
.2 — i 11
YR sin (2912) - !
sin“| 2013 | = —; ot TRTRTRTRTR TR
sin (2012) + C2 .8k Iy . } . A } v — v . — v
_ _ 2VE LE .

C= cos(2912) Amioch 10-5 |
where V' = \/zGFh3c3ne 1s the matter L e
potential. We assume Mikheyev-Smirnov- 0 8 ¢4 6
Wolfenstein (MSW) resonance (C = 0). t (ms)

Input:
« E=5x10%V
« Two flavors with Am122 =7.53x 107 eV @ PennState




Kinetic Theory

« Examples
Bipolar (without neutrino interaction)
Bipolar oscillations occur for pure electron LOf ——————————————— 1
anti/neutrinos and for pure anti/muon . ‘
neutrinos. If we assume the distribution of 0.8+ .

anti/neutrinos are isotropic

T
PR S —Y

Hyeutrino =9 - [m: — Pl)
Input: - 0al —— P(v) |
« E=564x%x10"eV 1

« Two flavors with Am122 =7.53 X 107> eV 0zl

o Initial distribution: f,, = f/m =1 :

« Background matter density =0 0.op /——————

. 912 —0.01 0 2 4 6

Time (s)
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Kinetic Theory

« Examples
Bipolar

Bipolar oscillations occur for pure electron 10 : _
anti/neutrinos and for pure anti/muon -
neutrinos. If we assume the distribution of 0.81 ]
anti/neutrinos are isotropic '

Am12204 - - 0.6 [ ve) 1
Hpeutrino = °E (f=77. <04_ V)
Input:
« E=35.64x10"Yev 0ol
« Two flavors with Am122 =7.53 X 1072 eV
o Initial distribution: f, , = f/m =1 00 —/ ~— ~
« Background matter density = 0O 0 2 4 . 6
. 0, =001 Time (s)
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Numerical Setup

» Angular Discretization

¥ —aFA QY —aFA =C|F
To study the neutrino propagation in a space A 5t + A oxi LF],
with anisotropic collision, we need angular B_
discretization, which is usually implemented Multiplying by ¥'" = ¥ and integrating over
on the distribution function to separate the S, with respect to d€2, we obtain
radial and angular parts. For example, in our A A
s : oF 0
case, we can simply consider MB_ + SAB = SB[ F],
N—1 ot ox!
F(t,x',Q) = Y FAt,x")¥,(Q): = FAY,, where
A=0
where the Fwould be matrix element of the Mf = J phyp 4dQ2,
density matrix we defined previously. Thus, S
the equation we have would be: _ _
A A SiB [ QWBY 4Q, SBF] = [ YBC[F1dQ.
F . F
¥, — + Q¥ ,—— = — i[H'Y,, F'¥ ] . > >
ot or' are the mass, stiffness and source matrices

respectively. @ PennState



Numerical Setup

» Angular Discretization

A: 12 angles B: 162 angles C: 2562 angles

AN
G TAVAVAY\
(i AVAVAYAY,

N il
E\‘\\'/A\WA\VI/’

)
3 "' !
!

/ S - G—s ' N\ .

Nawawvia¥s % Credit:

NS Bhattacharyya
M (2022)

The simplest geodesic grid consists of 12 angular points which are vertices of a regular
icosahedron, the Cartesian coordinates of which are given by

1 1 1 C1+4/5

(OSil,i¢)7 (il,i¢90)7 (i¢90,i]‘)9¢
V1+@? V1+@? V1+@?

Here @ is the golden radio. "; °,’ PennState




Numerical Setup

» Angular Discretization

We have firstly:

H vacuum

( H, H, va
H, H, H,

H, H, H,

\ )

The values of H,,  can be either taking from

theoretical assumptions or calculated by
experimentally measured values of UppNg -

Given also the Hamiltonian for matter.

( _
n, — Ny,

0

0

Hmatter = \/EGF 0 n, — ny 0

0

\

0

n,— n;

\

Note that they are just leading order terms from QFT
calculation. Also note that here we assume the distribution
of charged lepton and antilepton is isotropic, hence there
is no angle dependence included.

And the neutrino self-interaction Hamiltonian:

Hpeutrino = \/EGF(1 - COSQA) X

(

(fc“—
X ¥, <
(

A _
eu

A _
er

—%

Vs

—%

f

eu

—xA

S er

) (e

A * —x —xA
() (eor
)* (,:a—};if)* (r2-7!

- ¥ PennState
rix .

where the f4 are tl@atrix element of the ang

discretized density




Summary

e Neutrino Oscillations
e Quantum Kinetics Theory

« Numerical Scheme



Questions welcome

Thank you for your attentions!
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Supplementary materials

-
X

( T i T \
<ava,iava,i> <avﬂ,java,i> <avy,kava,i> ¢( 3 ) _ z J- [ 7)) h) hei?'
(2 )32E
T T T
’ p,
g<2avﬁ] v, k a\z,,kavy,k>)

44/2M3,

in which g is the weak coupling constant, and M, is the mass of the W bosons.

Py

T
va v
GFE

The neutrinos and antineutrinos are related by CP symmetry, such that we have the
following transformation rule:

CP —
When we consider the process of time evolution, we have:

CP — -
Vg = Vg = Vg > Vp,
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Weak Interaction

In a charged-current weak scattering process, a charged weak interaction involves the
exchange of a W, W™bosons. For example, when a neutrino interacts with a nucleus
in a neutrino detector, it can scatter off an atomic nucleus via a charged-current weak
interaction, producing a charged lepton (an electron, muon or tau) and changing the
quark flavor. The reaction can be represented as follows:

v+ N - 1+ X,

where v is the neutrino, N is the atomic nucleus, I is the charged lepton, and X is the
recoiling nucleus.

In a neutral-current weak scattering process, the exchange of a Z boson is involved.
For example, when a neutrino interacts with an atomic nucleus in a neutrino detector,
it can scatter off the nucleus via a neutral-current weak interaction, producing a
recoiling nucleus and a neutrino of the same flavor. The reaction can be represented
as follows:

v+ N-o>v+ X
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Mean Field Approximation

Writing such an equation more explicitly, it reads
ip) ;= [Ho() +Ty(p). ] =0

with

1—‘l,ij(io) = Z U(im,jn)pZ,nm .

mn
The mean-field potential is built up from a complete set of one-body density matrix

components for particle 2p, , ., each contributing with the matrix element

Olim.jn) = <im ‘ Vis ‘ jn>, with incoming (outgoing) single-particle states.
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