

A photon signal from stimulated decays of axion dark matter in the Milky Way

Takuya Okawa, Francesc Ferrer, Bhupal Dev

N3AS summer school 2023

QCD axions and ALPs - motivation

• QCD axions solve the strong CP problem

$$\mathscr{L}_{\rm QCD} \supset -\frac{\alpha_s}{8\pi} G^a_{\mu\nu} \widetilde{G}^{\mu\nu}_a \theta$$

(ALPs: let m_a and f_a be independent parameters)

theory: θ = arbitrary experiment: $|\theta| \lesssim 10^{-10}$ C. Abel et al. 2001.11966

- possible candidates for dark matter L. F. Abbott & P. Sikivie (1983) ...
- explain astrophysical anomalies:
 - Stellar cooling
 - TeV gamma-ray transparency
 - Hard X-ray from neutron stars
- G. G. Raffelt et al. 1110.6397
 M. Giannotti et al. 1512.08108
 K. Kohri & H. Kodama 1704.05189
 G. Galanti et al. 2210.05659
- Malte Buschmann et al. 1910.04164

• string theory, $(g-2)_{\mu}$ problem, R-parity breaking ... etc. E. Witten (1984), D. Chung et al. 0009292, B. Bellazzini et al. 1702.02152

• • •

Axion searches

haloscopes & helioscopes

beam dump experiments & coliders

CAST IAXO ADMX ALPS MADMAX

. . .

Image: CAST collaboration

Image: BaBar collaboration

BaBar E137 E141 CHARM LEP

GRB Sun Globular Cluster NS, WD, SN Polarizations

astrophysics

. . .

Image: J.H. Buckley et al. 2004.06486

Image: Planck collaboration

CMB spectra birefringence D & He abundance X-ray background

cosmology

- axion-like particle dark matter in the Galaxy
- $m_a \simeq 0.1 100 \ \mu \text{eV}$
- coupled only to a photon: $\mathscr{L}_{\text{int.}} = -\frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

Stimulated decay of axion

$$\mathscr{L}_{\text{int.}} = -\frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Change of a distribution function due to $a(\mathbf{p}_{\mathbf{a}}) \rightarrow \gamma(\mathbf{p}_{1}) + \gamma(\mathbf{p}_{2})$ and the inverse

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}f_1 &= \frac{1}{2E_1} \int \frac{\mathrm{d}^3 p_a}{(2\pi)^3 2E_a} \int \frac{\mathrm{d}^3 p_2}{(2\pi)^3 2E_2} \left| \mathscr{M} \right|^2 \left(f_a \left(1 + f_1 \right) \left(1 + f_2 \right) - f_1 f_2 \left(1 + f_a \right) \right) (2\pi)^4 \delta^4 \left(p_a - p_1 - p_2 \right) \\ &= \frac{1}{2E_1} \int \frac{\mathrm{d}^3 p_a}{(2\pi)^3 2E_a} \int \frac{\mathrm{d}^3 p_2}{(2\pi)^3 2E_2} \left| \mathscr{M} \right|^2 \left(f_a \left(1 + f_1 + f_2 \right) - f_1 f_2 \right) (2\pi)^4 \delta^4 \left(p_a - p_1 - p_2 \right) \end{aligned}$$

stimulated decay of axion axion production from two photons

In the rest frame of axion

Stimulated decay of axion in the Milky Way

free free absorption (a free electron gains energy during a collision with an ion by absorbing a photon)

$$S(\nu) = \frac{m_a^3 g_{a\gamma}^2}{64\pi} \frac{1}{4\pi\Delta\nu} \int dx \int d\Omega \ \rho_a(x,\Omega) e^{-\tau(\nu,x,\Omega)} \left(f_{\gamma}(x,\overrightarrow{p},\Omega,t) + f_{\gamma}(x,-\overrightarrow{p},\Omega,t) \right)$$

background photons

- CMB
- Extragalactic background

$$T_{\text{exgal}}(\nu) \simeq 1.19 \left(\frac{\text{GHz}}{\nu}\right)^{2.62} \text{ K}$$

• photons from galactic source (408MHz Haslam map)

Axion stars

 $\rho_a(r)$? \rightarrow NFW profile (cuspy) and Burkert profile (cored)

- a clump of axions supported by quantum pressure
- solutions of Klein-Gordon equation + Poisson equation
 - + assumptions + simplifications

•
$$R_a \sim (270 \text{ km}) \left(\frac{10 \mu \text{eV}}{m_a}\right)^2 \left(\frac{10^{-12} M_{\odot}}{M_a}\right)$$
 P. H. Chavanis & L. Delfini 1103.2054

could be modified by a formation of axion stars and their gravitational interactions with normal stars

 $\rightarrow \rho_a(r)$ is modified by 10% at most

Telescopes

SKA Observatory

Signal-to-noise ratio of a single antenna

$$\frac{S}{N} = \frac{m_a^3 g_{a\gamma}^2}{512\pi^2} \frac{\eta A f_{\Delta}}{k_B T} \sqrt{\frac{t_{\text{obs}}}{\Delta \nu}} \int dx \int d\Omega \ \rho_a(x, \Omega) e^{-\tau(\nu, x, \Omega)} \left(f_{\gamma}(x, \overrightarrow{p}, \Omega, t) + f_{\gamma}(x, -\overrightarrow{p}, \Omega, t) \right)$$

All-sky maps

The large signal-to-noise ratio is obtained in

- the direction of the GC and the anti-GC
- the opposite direction to bright radio sources

Detectability

Detectability of photons from a stimulated decay of axions from several directions (Galactic center, anti-Galactic center, S147, W28, W50, Vela) by 100 hrs of observation

 $g_{a\gamma}\gtrsim 2\times 10^{-11}~{\rm GeV^{-1}}~(m_a\simeq 10^{-6}~{\rm eV})$ produce the radio photon flux detectable at the SKA Observatory

Backup slides

Occupation numbers of photons

A. Caputo et al. 1811.08436

Distribution of ALP

The NFW profile:

$$\rho_a(r) = \frac{\delta_c \rho_c}{\left(r/r_s\right) \left(1 + r/r_s\right)^2} \qquad \delta_c = \frac{\Delta_{\rm vir}}{3} \frac{r_c^3}{\ln\left(1 + r_c\right) - r_c/\left(1 + r_c\right)}$$

$$r_s \simeq 20 \text{ kpc}$$
 : the scale radius
 $\Delta_{vir} = 200$
 $R_{vir} \simeq 221 \text{ kpc}$: the virial radius
 $r_c \equiv R_{vir}/r_s$

The Burkert profile:

$$\rho(r) = \frac{\rho_s}{\left(1 + \frac{r}{r_{sb}}\right) \left(1 + \frac{r}{r_{sb}}\right)^2}$$

 $r_{sb} = 12.67 \text{ kpc}$

Four contributions to the noise temperature T

- atmospheric radio wave $T \sim 3 \text{ K}$
- CMB *T* ~ 2.725 K
- noise of receiver $T \sim 20,40$ K
- Synchrotron radiation from the Galactic or extragalactic system

$$T_{\rm bg} = 60 \left(\frac{300 \rm MHz}{\nu}\right)^{2.55} \rm K$$

Physics of a scalar field coupled to gravity is described by the action $S = \int d^4x \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) - \frac{1}{16\pi G} R \right]$

Trick to solve a resulting EoM:

Assuming axion is non-relativistic

$$\phi(\mathbf{r},t) \approx \frac{1}{\sqrt{2m_a}} \left(\psi(\mathbf{r},t) e^{-im_a t} + \psi^*(\mathbf{r},t) e^{+im_a t} \right)$$

and taking an average over scales larger than m_a

Gross-Pitaevskii-Poisson equations are obtained $i\dot{\psi} = -\frac{1}{2m_a}\nabla^2\psi + \left[V'_{\text{eff}}\left(\psi^*\psi\right) + m_a\Phi\right]\psi$

 $\nabla^2 \Phi = 4\pi G m_a \psi^* \psi$