# Probing the Recombination Era with CMB Anisotropies

Gabriel Lynch Knox Group @ UC Davis N3AS Summer School, Santa Cruz, July 2023





# Contents

- 1. Review of standard recombination
- 2. Constraining modified recombination
- 3. Results
- 4. Future work

## ination mbination

# Contents

- 1. Review of standard recombination
- 2. Constraining modified recombination
- 3. Results
- 4. Future work

## ination mbination

## Immediately after BBN ( $t \sim 20$ min), the universe contained a plasma of protons, helium nuclei, electrons, and photons at temperature $T \equiv T_{\gamma}$



NAOJ

## Immediately after BBN ( $t \sim 20$ min), the universe contained a plasma of protons, helium nuclei, electrons, and photons at temperature $T \equiv T_{\gamma}$



NAOJ

## Immediately after BBN ( $t \sim 20$ min), the universe contained a plasma of protons, helium nuclei, electrons, and photons at temperature $T \equiv T_{\nu}$



This situation persists until the universe has cooled enough to allow neutral atoms to form.

NAOJ

A simple model: equilibrium (Saha) recombination Quantity of interest is the ionization fraction  $X_{\rho}(z)$ :

### Assume equilibrium abundances of different species (HII, HI, HeI, etc...)

Saha equation gives  $X_e$  as a function of T

$$\left(\frac{1-X_e}{X_e^2}\right)_{eq} = \frac{2\zeta}{\pi}$$

 $X_e = \frac{n_e}{n_p + n_H}$ 

 $\frac{n_i}{n_i} = \exp\left(\frac{E_i - E_j}{T}\right)$ 



and excited states negligible at late times (low redshifts).





# In Saha recombination, hydrogen quickly settles into the ground state, with ionized



Saha recombination is a reasonable approximation, but is not correct in detail because recombination does not occur in equilibrium:

Saha recombination is a reasonable approximation, but is not correct in detail because recombination does not occur in equilibrium:

- fraction.
- Atoms which recombine emit an energetic photon which often can immediately re-ionize a nearby atom. There is no net increased in the ground state.

• The Thomson scattering rate  $\Lambda_{\gamma} \sim \sigma_T X_e(n_p + n_H)$  depends on the ionization

Saha recombination is a reasonable approximation, but is not correct in detail because recombination does not occur in equilibrium:

- fraction.
- Atoms which recombine emit an energetic photon which often can immediately re-ionize a nearby atom. There is no net increased in the ground state.

Peebles (1968) and Sunyaev, Kurt, and Zel'dovich (1968) gave the first qualitatively accurate picture using an effective three-level atom model.

• The Thomson scattering rate  $\Lambda_{\gamma} \sim \sigma_T X_e(n_p + n_H)$  depends on the ionization





















#### An interlude: The Hubble tension



Adapted from Freedman 2021

#### An interlude: The Hubble tension



Adapted from Freedman 2021

# Contents

- 1. Review of standard recombination
- 2. Constraining modified recombination
- 3. Results
- 4. Future work

## ination mbination

can tell us.

 $\rightarrow$  Model with 11 free parameters: { $\omega_b, \omega_{cdm}, H_0, \tau_{reio}, n_s, A_s, q_1, q_2, q_3, q_4, q_5$ }

### We want to assume complete ignorance about recombination and see what the data



can tell us.

The process goes as follow:

• Pick points  $q_i$  and interpolate between them, defining a function  $f(q_i, z)$ 

1.0

 $X_e(z)$ 

0.0

 $X_e$ 

### We want to assume complete ignorance about recombination and see what the data





The process goes as follow:

- Pick points  $q_i$  and interpolate between them, defining a function  $f(q_i, z)$
- Transforming f to be within physical bounds:  $f \rightarrow r(f, z)$

1.0

 $X^{e(z)}_{z}$ 

0.0

 $\mathbf{2}$  $\Lambda X_e$ 





The process goes as follow:

- Pick points  $q_i$  and interpolate between them, defining a function  $f(q_i, z)$
- Transforming f to be within physical bounds:  $f \rightarrow r(f, z)$

1.0

 $X^{e(z)}_{z}$ 

0.0

 $\mathbf{2}$  $\Lambda X_e$ 





### The process goes as follow:

- Pick points  $q_i$  and interpolate between them, defining a function  $f(q_i, z)$
- Transforming f to be within physical bounds:  $f \rightarrow r(f, z)$

• Defining  $\Delta X_e(z) \equiv r(f(q_i, z), z)$ 

1.0

 $X^{e(z)}_{z}$ 

0.0

 $\mathbf{2}$  $\Lambda X_e$ 





### The process goes as follow:

- Pick points  $q_i$  and interpolate between them, defining a function  $f(q_i, z)$
- Transforming f to be within physical bounds:  $f \rightarrow r(f, z)$

• Defining  $\Delta X_e(z) \equiv r(f(q_i, z), z)$ 

1.0

 $X^{e(z)}_{s}$ 

0.0

 $\mathbf{2}$ 





## Using this model of modified recombination (ModRec) we can achieve very general deviations from the standard scenario.



# Using this model of modified recombination (ModRec) we can achieve very general deviations from the standard scenario.



# Using this model of modified recombination (ModRec) we can achieve very general deviations from the standard scenario.



NB: Previous studies do not allow for such freedom — most assume a) small perturbations and/or b) linear response of the likelihood to changes in recombination. It turns out this is overly restrictive!

- Model space is 11 dimensional
- Each theoretical  $C_{\ell}$  calculation step takes ~1s of compute time



- Model space is 11 dimensional

• Each theoretical  $C_{\ell}$  calculation step takes ~1s of compute time Inference is not computationally feasible! So we train an emulator:

## $\{\omega_b, \omega_c, H_0, \ldots\} \rightarrow$





- Model space is 11 dimensional
- Each theoretical  $C_{\ell}$  calculation step takes ~1s of compute time

Inference is not computationally feasible! So we train an emulator:







- Model space is 11 dimensional
- Each theoretical  $C_{\ell}$  calculation step takes ~1s of compute time

Inference is not computationally feasible! So we train an emulator:







# Contents

- 1. Review of standard recombination
- 2. Constraining modified recombination
- 3. Results
- 4. Future work

## ination mbination

# We ran an MCMC to jointly estimate standard cosmological parameters along with ModRec parameters. Our data set was Planck 2018 (TTTEEE+lowE+lowT)



# First, we verify that our emulator is accurate enough for this task by thinning the sample and recomputing likelihoods using the "true" power spectra



# Unlike analyses using approximations, we find that parameter constraints are significantly weakened, in some cases more than doubling!



### Previous work: placed constraints using principal component analysis (had to assume small perturbations and a linear response from the likelihood)

| Parameter         | $\Lambda { m CDM} + q_i$ | $\Lambda \mathrm{CDM}$              |
|-------------------|--------------------------|-------------------------------------|
| $\omega_b$        | $0.02239 \pm 0.00036$    | $0.02233 \pm 0.00015$               |
| $\omega_{cdm}$    | $0.1205 \pm 0.0019$      | $0.1202\pm0.0014$                   |
| $n_s$             | $0.9599 \pm 0.0097$      | $0.9637 \pm 0.0045$                 |
| $	au_{reio}$      | $0.0534\pm0.0080$        | $0.0543\substack{+0.0072\\-0.0082}$ |
| $\ln(10^{10}A_s)$ | $3.037 \pm 0.018$        | $3.044\pm0.016$                     |
| $H_0$             | $68.5\pm2.3$             | $67.21 \pm 0.62$                    |
| $\overline{q_1}$  | $-0.22^{+0.25}_{-0.21}$  | _                                   |
| $q_2$             | $0.012 \pm 0.096$        | —                                   |
| $q_3$             | $-0.14\pm0.19$           | —                                   |
| $q_4$             | $-0.03^{+0.15}_{-0.11}$  | _                                   |
| $q_5$             | $-0.02^{+0.30}_{-0.46}$  | _                                   |

This work

| Parameter                 | + 1 mode            | + 2 modes           | + 3 modes        |
|---------------------------|---------------------|---------------------|------------------|
| $100\Omega_{\rm b}h^2$    | $2.241 \pm 0.016$   | $2.241 \pm 0.018$   | $2.239 \pm 0.0$  |
| $\Omega_{\rm c}h^2$       | $0.1191 \pm 0.0009$ | $0.1192 \pm 0.0010$ | $0.1192 \pm 0.0$ |
| $H_0$                     | $67.72 \pm 0.43$    | $67.72 \pm 0.44$    | $67.84 \pm 0.4$  |
| au                        | $0.054 \pm 0.007$   | $0.055 \pm 0.007$   | $0.055 \pm 0.0$  |
| <i>n</i> <sub>s</sub>     | $0.9667 \pm 0.0051$ | $0.9668 \pm 0.0050$ | $0.9657 \pm 0.0$ |
| $\ln(10^{10}A_{\rm s})$ . | $3.042 \pm 0.015$   | $3.042 \pm 0.014$   | $3.040 \pm 0.0$  |
| $\mu_1$                   | $0.02 \pm 0.12$     | $0.01 \pm 0.12$     | $0.03 \pm 0.1$   |
| $\mu_2$                   |                     | $0.01 \pm 0.17$     | $0.05 \pm 0.1$   |
| $\mu_3$                   | •••                 |                     | $-0.84 \pm 0.6$  |
|                           |                     |                     |                  |

Planck 2018



# Unlike analyses using the LRA, we find that parameter constraints are significantly weakened, in some cases more than doubling!

| Parameter         | $\Lambda { m CDM} + q_i$       | $\Lambda \mathrm{CDM}$              |
|-------------------|--------------------------------|-------------------------------------|
| $\omega_b$        | $0.02239 \pm 0.00036$          | $0.02233 \pm 0.00015$               |
| $\omega_{cdm}$    | $0.1205 \pm 0.0019$            | $0.1202 \pm 0.0014$                 |
| $n_s$             | $0.9599 \pm 0.0097$            | $0.9637 \pm 0.0045$                 |
| $	au_{reio}$      | $0.0534 \pm 0.0080$            | $0.0543\substack{+0.0072\\-0.0082}$ |
| $\ln(10^{10}A_s)$ | $3.037 \pm 0.018$              | $3.044\pm0.016$                     |
| $H_0$             | $68.5 \pm 2.3$                 | $67.21 \pm 0.62$                    |
| $\overline{q_1}$  | $-0.22^{+0.25}_{-0.21}$        | —                                   |
| $q_2$             | $0.012\pm0.096$                | _                                   |
| $q_3$             | $-0.14\pm0.19$                 | _                                   |
| $q_4$             | $-0.03\substack{+0.15\\-0.11}$ | _                                   |
| $q_5$             | $-0.02\substack{+0.30\\-0.46}$ | _                                   |

This work



| Parameter                 | + 1 mode            | + 2 modes           | + 3 modes        |
|---------------------------|---------------------|---------------------|------------------|
| $100\Omega_{\rm b}h^2$    | $2.241 \pm 0.016$   | $2.241 \pm 0.018$   | $2.239 \pm 0.0$  |
| $\Omega_{ m c} h^2$       | $0.1191 \pm 0.0009$ | $0.1192 \pm 0.0010$ | $0.1192 \pm 0.0$ |
| $H_0$                     | $67.72 \pm 0.43$    | $67.72 \pm 0.44$    | $67.84 \pm 0.4$  |
| au                        | $0.054\pm0.007$     | $0.055 \pm 0.007$   | $0.055 \pm 0.0$  |
| $n_{\rm s}$               | $0.9667 \pm 0.0051$ | $0.9668 \pm 0.0050$ | $0.9657 \pm 0.0$ |
| $\ln(10^{10}A_{\rm s})$ . | $3.042 \pm 0.015$   | $3.042 \pm 0.014$   | $3.040 \pm 0.0$  |
| $\mu_1$                   | $0.02 \pm 0.12$     | $0.01 \pm 0.12$     | $0.03 \pm 0.1$   |
| $\mu_2$                   | •••                 | $0.01 \pm 0.17$     | $0.05 \pm 0.1$   |
| $\mu_3 \ldots \ldots$     | •••                 | •••                 | $-0.84 \pm 0.6$  |
|                           |                     |                     |                  |

Planck 2018



# We find a range of recombination histories consistent with the data. Both $X_e(z)$ and g(z) could have deviated significantly from their fiducial values



#### The increased freedom in recombination can alleviate the Hubble tension. One way to do this is by increasing uncertainty:



| Parameter         | $\Lambda { m CDM} + q_i$       | ΛCD           |
|-------------------|--------------------------------|---------------|
| $\omega_b$        | $0.02239 \pm 0.00036$          | $0.02233 \pm$ |
| $\omega_{cdm}$    | $0.1205 \pm 0.0019$            | $0.1202 \pm$  |
| $n_s$             | $0.9599 \pm 0.0097$            | $0.9637 \pm$  |
| $	au_{reio}$      | $0.0534\pm0.0080$              | $0.0543^+_{}$ |
| $\ln(10^{10}A_s)$ | $3.037 \pm 0.018$              | $3.044 \pm$   |
| $H_0$             | $68.5\pm2.3$                   | $67.21~\pm$   |
| $\overline{q_1}$  | $-0.22^{+0.25}_{-0.21}$        | _             |
| $q_2$             | $0.012\pm0.096$                | _             |
| $q_3$             | $-0.14\pm0.19$                 | _             |
| $q_4$             | $-0.03\substack{+0.15\\-0.11}$ | —             |
| $q_5$             | $-0.02^{+0.30}_{-0.46}$        | _             |



SHOES measurement:  $H_0 = 73.29 \pm 0.90 \, \text{km/s/Mpc}$ 





### The increased freedom in recombination can alleviate the Hubble tension. One way to do this is by increasing uncertainty:



Just by increasing uncertainty,  $H_0$ tension is reduced to  $\sim 2\sigma$ 

| Parameter         | $\Lambda { m CDM} + q_i$ | $\Lambda CE$  |
|-------------------|--------------------------|---------------|
| $\omega_b$        | $0.02239 \pm 0.00036$    | $0.02233 \pm$ |
| $\omega_{cdm}$    | $0.1205 \pm 0.0019$      | $0.1202 \pm$  |
| $n_s$             | $0.9599 \pm 0.0097$      | $0.9637 \pm$  |
| $	au_{reio}$      | $0.0534\pm0.0080$        | $0.0543^+$    |
| $\ln(10^{10}A_s)$ | $3.037 \pm 0.018$        | $3.044 \pm$   |
| $H_0$             | $68.5\pm2.3$             | $67.21 \pm$   |
| $\overline{q_1}$  | $-0.22^{+0.25}_{-0.21}$  |               |
| $q_2$             | $0.012\pm0.096$          | _             |
| $q_3$             | $-0.14\pm0.19$           | —             |
| $q_4$             | $-0.03^{+0.15}_{-0.11}$  | _             |
| $q_5$             | $-0.02^{+0.30}_{-0.46}$  | _             |

SH<sub>0</sub>ES measurement:  $H_0 = 73.29 \pm 0.90 \text{ km/s/Mpc}$ 

![](_page_45_Picture_6.jpeg)

![](_page_45_Figure_7.jpeg)

Selection criteria:  $\chi^2_{model} - \chi^2_{bf,\Lambda CDM} < 0$ 

# However, we can also find models which fit the data well and deliver a high $H_0$ .

## However, we can also find models which fit the data well and deliver a high $H_0$ . Selection criteria: $\chi^2_{model} - \chi^2_{bf,\Lambda CDM} < 0$

![](_page_47_Figure_1.jpeg)

![](_page_47_Picture_3.jpeg)

## However, we can also find models which fit the data well and deliver a high $H_0$ . Selection criteria: $\chi^2_{model} - \chi^2_{bf,\Lambda CDM} < 0$

![](_page_48_Figure_1.jpeg)

Provides a clear target for model builders: make recombination look like this and you have solved the Hubble tension. Might not be easy to do!

![](_page_48_Picture_5.jpeg)

# Planck data only probes multipoles out to $\ell \sim 2500$ , so larger variations are unconstrained at very small scales

![](_page_49_Figure_1.jpeg)

# But these small scale deviations will be constrained by upcoming (this year?) data from SPT-3G.

![](_page_50_Figure_1.jpeg)

51

![](_page_50_Picture_3.jpeg)

### Key takeaways:

- The linear response approximation is overly restrictive for the recombination problem
- The data still allow for very different recombination histories
- The Hubble tension can be addressed via modifications to recombination
- Recombination can be more tightly constrained with high resolution measurements of CMB power spectra — many of these recombination histories will soon be ruled out