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NAOJ

Immediately after BBN ( ), the universe contained a plasma of protons, 

helium nuclei, electrons, and photons at temperature 

t ∼ 20 min

T ≡ Tγ

This situation persists until the universe has cooled enough to allow neutral 
atoms to form.
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Quantity of interest is the ionization fraction :Xe(z)

Xe =
ne

np + nH

A simple model: equilibrium (Saha) recombination

Assume equilibrium abundances of different species (HII, HI, HeI, etc…)

ni

nj
= exp (

Ei − Ej

T )

( 1 − Xe

X2
e )

eq

=
2ζ(3)

π2 ( 2πT
me )

3/2

η exp ( 13.6 eV
T )

Saha equation gives  as a function of Xe T
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zrec ∼ 1350
Trec ∼ 3690 K ∼ 0.31 eV

 yearstrec ∼ 256,000

In Saha recombination, hydrogen quickly settles into the ground state, with ionized 
and excited states negligible at late times (low redshifts). 
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Saha recombination is a reasonable approximation, but is not correct in detail 
because recombination does not occur in equilibrium:

• The Thomson scattering rate  depends on the ionization 

fraction.

Λγ ∼ σTXe(np + nH)

Peebles (1968) and Sunyaev, Kurt, and Zel’dovich (1968) gave the first qualitatively 
accurate picture using an effective three-level atom model.

• Atoms which recombine emit an energetic photon which often can 
immediately re-ionize a nearby atom. There is no net increased in the 
ground state.
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HII → HI

HeII → HeI HeIII → HeII



16

The takeaway from this is that standard recombination is well understood!

Who cares?



17

The takeaway from this is that standard recombination is well understood!

Who cares?

→ The ionization fraction  

determines the visibility 

Xe(z)
g(z)



18

The takeaway from this is that standard recombination is well understood!

Who cares?

→ The ionization fraction  

determines the visibility 

Xe(z)
g(z)

→  characterizes how photons 
and electrons decouple

g(z)



19

The takeaway from this is that standard recombination is well understood!

Who cares?

→ The ionization fraction  

determines the visibility 

Xe(z)
g(z)

→  characterizes how photons 
and electrons decouple

g(z)

→ The decoupling process affects 

CMB power spectra CTT
ℓ , …



20

The takeaway from this is that standard recombination is well understood!

Who cares?

→ The ionization fraction  

determines the visibility 

Xe(z)
g(z)

→  characterizes how photons 
and electrons decouple

g(z)

→ The decoupling process affects 

CMB power spectra CTT
ℓ , …

Observe this

learn about this
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An interlude: The Hubble tension

Adapted from Freedman 2021 
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An interlude: The Hubble tension

Adapted from Freedman 2021 

!∼ 5σ
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We want to assume complete ignorance about recombination and see what the data 
can tell us.

 Model with  11 free parameters: { }→ ωb, ωcdm, H0, τreio, ns, As, q1, q2, q3, q4, q5
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Using this model of modified recombination (ModRec) we can achieve very general 
deviations from the standard scenario.

NB: Previous studies do not allow for such freedom — most assume a) small 
perturbations and/or b) linear response of the likelihood to changes in 
recombination. It turns out this is overly restrictive!
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Parameter estimation is done with MCMC, however…

• Extension parameters  are highly correlated  long chain correlation lengthsqi →
• Model space is 11 dimensional 

Inference is not computationally feasible! So we train an emulator:
• Each theoretical  calculation step takes ~1s of compute timeCℓ
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We ran an MCMC to jointly estimate standard cosmological parameters along with 
ModRec parameters. Our data set was Planck 2018 (TTTEEE+lowE+lowT)
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First, we verify that our emulator is accurate enough for this task by thinning the 
sample and recomputing likelihoods using the “true” power spectra
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Unlike analyses using approximations, we find that parameter constraints are 
significantly weakened, in some cases more than doubling!
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Previous work: placed constraints using principal component analysis (had to assume 
small perturbations and a linear response from the likelihood)

This work

Planck 2018
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Unlike analyses using the LRA, we find that parameter constraints are significantly 
weakened, in some cases more than doubling!

This work

Planck 2018
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We find a range of recombination histories consistent with the data. Both 
 could have deviated significantly from their fiducial valuesXe(z) and g(z)
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The increased freedom in recombination can alleviate the Hubble tension. One way 
to do this is by increasing uncertainty:

SH0ES measurement: 
H0 = 73.29 ± 0.90 km/s/Mpc
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The increased freedom in recombination can alleviate the Hubble tension. One way 
to do this is by increasing uncertainty:

SH0ES measurement: 
H0 = 73.29 ± 0.90 km/s/Mpc

Just by increasing uncertainty,  
tension is reduced to ~2σ
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However, we can also find models which fit the data well and deliver a high . 
Selection criteria: 

H0
χ2
model − χ2

bf,ΛCDM < 0
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However, we can also find models which fit the data well and deliver a high . 
Selection criteria: 

H0
χ2
model − χ2

bf,ΛCDM < 0

Provides a clear target for model builders: make recombination look like this and 
you have solved the Hubble tension. Might not be easy to do!
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Planck data only probes multipoles out to , so larger variations are 
unconstrained at very small scales

ℓ ∼ 2500
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But these small scale deviations will be constrained by upcoming (this year?) data 
from SPT-3G.
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Key takeaways:

• The linear response approximation is overly restrictive for the 
recombination problem

• The data still allow for very different recombination histories

• The Hubble tension can be addressed via modifications to 
recombination

• Recombination can be more tightly constrained with high resolution 
measurements of CMB power spectra — many of these recombination 
histories will soon be ruled out


