UHECRs & Multimessenger Astrophysics part II

Glennys R. Farrar New York University

> N3AS July 21, 2023

Key points from last time

- Measurements generally agree between Auger & TA; quality of data has vastly improved in past 15 years.
- Maximum energy is mainly determined by accelerators; energy loss in propagation ("GZK") has an impact but it's secondary.
- Composition of extragalactic component is mixed, starting as proton at lowest energy then becoming heavier with increasing energy.
 - LHC-tuned particle physics models do not correctly describe showers (relation between muons, X_{max} ...)
- The mean rigidity (E/Z) is approximately constant, with peak about 5 EV (E = 5 EeV for protons).
- Larmor radius is ~ 1 kpc (E_{EeV}/Z) / B_{uG} .

Today

- Acceleration: "Hillas Criterion", mechanisms
- Magnetic deflections
- What can be said about sources?
 - Arrival directions
 - Anisotropies
 - Indirect info from spectrum and composition data
- Using neutrinos to find sources intro to IceCube

Acceleration

32

All variants on Fermi's Classic Mechanisms:

- "2nd Order Fermi"
- "1st Order Fermi" Shock Acceleration: spectrum~E^{-2.2}

Accelerator must be able to retain the particle $R_{Larmor} \leq L$ (size of accelerating system) \Rightarrow maximum rigidity. $E_{EeV}/Z \leq L_{kpc} B_{uG} \Gamma$

Also, minimum luminosity (Poynting):

for p:
$$L \sim \frac{1}{6} c \Gamma^4 B^2 R^2 \gtrsim 10^{45} \Gamma^2 E_{20}^2 \text{ erg s}^{-1}$$

Magnetic deflections make source ID difficult

Magnetic deflections are large and uncertain at low rigidity

Larmor radius : 1.1 kpc (R_{EV} / B_{µG})

34

G. Farrar, N3AS School, July 20 2023

Arrival direction inhomogeneities

<u>Clear Dipole anisotropy</u> amplitude >6% above 8 EeV

"Hot spot" in Cen A direction at high E

Correlations seen with starburst galaxies and AGN (ignoring magnetic deflections)

DATA (Auger 2018): > 8 EeV 180

-90

Observation $E \ge 8 \text{ EeV}$

36

45°Top Hat Smoothing

INDICATION OF ANISOTROPY IN ARRIVAL DIRECTIONS OF ULTRA-HIGH-ENERGY COSMIC RAYS THROUGH COMPARISON TO THE FLUX PATTERN OF EXTRAGALACTIC GAMMA-RAY SOURCES

THE PIERRE AUGER COLLABORATION see the end matter for the full list of authors.

(Published in ApJL as DOI:10.3847/2041-8213/aaa66d)

TA has also reported hot spots, but so far they have failed to sustain 4o

0.2 0.1

Model Flux Map - Active galactic nuclei - E > 60 EeV

What can we deduce about UHECR sources?

Indirect constraints on sources

- Detailed fit to spectrum & composition → processing in source environment [M. Muzio+GF, ApJL23]
- Large scale anisotropy [T. Bister+GF, in prep]
- [Hotspots]

UFA 2015 model proposed to explain light population below ankle Cosmic Rays are Accelerated, then fragmented

Unger, GF & Anchordoqui 2015

Cosmic Rays are Accelerated, then fragmented

Unger, GF & Anchordoqui 2015

41

G. Farrar, N3AS School, July 20 2023

Constrains the source environment (T, B, ...)!Muzio+GF Ap|L23 **UHECRs** y's & v EGB A IceCube Cascades 2020 EGB B IceCube Glashow 2021 $E^{3dN}_{\overline{dE}}$ (eV²km⁻²sr⁻¹yr⁻¹) 10^{-6} Auger 2019 shifted $\chi^2/ndf = 1.05$ E?#I TDGRB IceCube vu 2019 HE bin IGRB 1.0 10^{-7} 0.5 cB 0.0 IceCube 1018 1019 1020 (GeV E/eV 10-8 FIS Sibyll2.3c 60 $(X_{\rm max})$ (g cm⁻²) 002 Auger 2019 shifted 41 (gcm Propagation v's 10^{-9} 40و(X_{max}) م Source Photohadronic ν 's Source Hadronic ν 's Fe Non-UHECR v's 10^{-10} 1013 1018 1019 1020 1018 1019 1020 109 1010 1011 1012 10^{14} 1015 1016 1017 1018 1019 E/eV E/eV E/eV

G. Farra $\gamma_{inj} = -1.45^{+1.25}_{-1.15} \rightarrow \text{Diffusive Shock Accel. OK (accelerator <math>\neq$ source) 42

Constrain the Surroundings of UHECR Accelerators (M. Muzio+GF, ApJL2032)

btw: $\gamma_{inj} = -1.45^{+1.25}_{-1.15} \rightarrow \text{Diffusive Shock Accel. OK (accelerator <math>\neq$ source) $T_{surround} = 60 - 2000 \text{ K}$ {Brms, L} of source (not accelerator as in Hillas) is constrained

G. Farrar, N3AS School, July 20 2023

black-body case $n_0 = 1$; the conversion for other n_0 values is $L = L_{\rm BB}/n_0$, $B = n_0 B_{\rm BB}$, $\lambda_c = \lambda_{c,\rm BB}/n_0$, and $n_g = n_0 n_{g,\rm BB}$.

Muzio&GF arXiv:2209.08068

T_{surround} = 60 - 2000 K excludes many candidate acceleration regions

Massive Galaxy Clusters (2 x disfavored: $T = 10^{7-8}$ K; $n_0 = 1$) AGN:

- radio lobes (T ≈ few keV)
- ?internal shocks in jet? may be problematic; must also account for boost
- inner AGN disk: maybe ok (T=60-1000 K)
 - but nearby dangerous regions & must account boost

Source Density Constraint from Anisotropy Teresa Bister + GF, to appear soon

- Ansatz: UHECR sources ~ large scale structure
 - \rightarrow approximate illumination map
 - + GMF deflections:

Good accounting of dipole magnitude, direction & energy dependence.

[Ding, Globus, GF Ap|L 2021]

- **New:** [T. Bister+GF, in prep]
 - Self-consistent spectrum & composition
 - "Bias" of sources relative to LSS? (none seen)
 - Place constraints on source density

Modeling Anisotropy above 8 EeV Teresa Bister + GF, in prep,

- LSS → Illumination map
- propagate thru GMF
- good fit to dipole

More accurate treatment of approach of **Ding**, **Globus**, **GF ApJL 2021 Extend to**

- constrain"bias" between large scale distribution of mass and UHECR sources
- strong bound on UHECR source density > 10-3 Mpc-3

G. Farrar, N3AS School, July 20 2023

Source density < 10-3 Mpc-3 strongly disfavored Teresa Bister + GF, to appear soon

Continuum model gives good fit to dipole. Create 1000 "source catalogs", source densities 10-3, 10-4, 10-5, 10-6 Mpc-3

Sampling source density: Dipole Amplitude and Direction

fraction within statistical uncertainty:

- · behave as continuous model: 68% within 68% statistical
- combining direction & amplitude: almost independent $(0.68^2 = 0.46)$

densities <=10⁻⁴ / Mpc³:

number of examples where dipole direction & amplitude fit at the same time: 0 / 1000

ci's are even more constraining on source density than dipole

E≥8 EeV

99% C.L.

Auger data

Expect intermediate multipoles if source density $< 10^{-3}$ Mpc⁻³.

Unlikely to see observed dipole direction and magnitude for density $< 10^{-3}$ Mpc⁻³.

Data take-aways

- Auger & TA in agreement on both spectrum and composition
- Spectrum now very well measured; multiple breaks. Rigidity cuts off at ~ 5 EV.
- Lowest energy extragalactic CRs are protons and He.
- Composition becomes heavier with E, possibly reaching Fe

Interpretations

- Processing in region surrounding sources (UFA, MUF, ...)
 - naturally explains sub-ankle extragalactic population
 - → Spectral index can be consistent with DSA: escape from source environment hardens intrinsic spectrum of accelerator
- + Sources appear to be abundant and relatively weak
- + Tidal disruption? (GF+Gruzinov, ApJ2009)

VHE Astrophysical Neutrinos IceCube

(coming: KM3Net, Antares in Mediteranean)

IceCube current (red), Gen2 (blue) & DeepCore/PINGU* (green)

*PINGU targets much lower E neutrinos for oscillation studies

Three types of neutrino events:

CC Muon Neutrino

track (data)

factor of ≈ 2 energy resolution < 1° angular resolution at high energies Neutral Current / Electron Neutrino

cascade (data)

≈ ±15% deposited energy resolution
≈ 10° angular resolution (in IceCube)
(at energies ≥ 100 TeV)

CC Tau Neutrino

"double-bang" (≥10PeV) and other signatures (simulation)

(not observed yet: τ decay length is 50 m/PeV)

Neutrino Challenges

- Small interaction cross section (but grows with energy)
- Huge muon and neutrino background from CR interactions in atmosphere (>10⁶ × signal)
 - use upward-going neutrinos
 - veto on accompanying muons or shower detected in IceTop

Neutrino Arrival Directions

Figure 1: **Skymap of the scan for point sources in the Northern Hemis** represents the local p-value obtained from the maximum likelihood analy spectral index as free fit parameter) at each location in the sky, shown in I with Hammer-Aitoff projection. The black circles indicate the three most the source list search. The circle of NGC 1068 also coincides with the ove Northern Sky.

Neutrino correlations with transients (multi messenger astronomy)

- Associations reported with
 - Blazar flares (Fermi TXS 0506+056, ...)
 - ~3 Tidal Disruption Events
- Combination of temporal AND directional correlations reduces chance associations, but not fully accepted yet.
- IceCube places strong limits on GRB associations

Galactic Neutrinos Science 2023

Galactic Center is overhead for IceCube, so CR muon background (10⁶ x bigger) is overwhelming Use ML and cascade events to avoid muon contamination

Still Early Days for neutrino spectrum and composition

Enjoy the UHECR-VHE neutrino future!