

Explosive Astrophysics: Supernovae

David Radice (Penn State)

Core-collapse supernovae

Figure. From Vink, Physics and Evolution of Supernova Remnants

Learning objectives

- The physics of core-collapse supernova explosion
- Gravitational waves and neutrino signals from core-collapse supernovae
- Supernova light curves

Core-collapse supernovae in numbers

• $\sim (30 \mathrm{yr})^{-1}$ in our galaxy

- O(few millions) to be discovered by LSST
- peak luminosity $L_{\rm SN} \sim 10^{10} L_{\odot}$
- $t_{\rm peak} \sim \text{ few weeks} \sim 10^6 \, {\rm sec}$

The radiated energy is

$$E_{\rm EM} \sim t_{\rm peak} L \sim 10^{48} \, {\rm erg.}$$

• $T_{\rm eff} \sim 2 T_{\odot} \approx 12,000 \,\mathrm{K}$

For a black body we have

$$L_{\rm SN} = 4 \,\pi \,\sigma \, R_{\rm SN}^2 \, T_{\rm eff}^4 \Longrightarrow R_{\rm SN} \sim 10^{15} \,\rm cm \gg R_{\star}.$$

The typical expansion velocity is

$$v \sim \frac{R_{\rm SN}}{t_{\rm peak}} = \frac{10^{15} \,\mathrm{cm}}{10^6 \,\mathrm{s}} = 10^9 \,\mathrm{cm}\,\mathrm{s}^{-1} \Longrightarrow K = \frac{1}{2} \,M v^2 \sim 10^{51} \left(\frac{M}{M_{\odot}}\right) \mathrm{erg} \gg E_{\rm EM}.$$

Core-collapse supernovae energy budget

The gravitational binding energy of a NS is

- $10^{45} \,\mathrm{erg}$ in GW
- $10^{48} \, \mathrm{erg} \, \mathrm{EM}$ radiation
- $10^{51}\,\mathrm{erg}\,{\equiv}\,1\mathrm{B}$ kinetic energy
- $10^{53}\,\mathrm{erg}\sim 0.1\,M_\odot\,c^2$ in neutrinos

Where does this energy come from?

$$U = -\frac{3}{5} \frac{G M^2}{R} = -\frac{3}{5} \frac{G M}{R c^2} M c^2 \sim 0.1 M_{\odot} c^2.$$

The SN problem: can we transfer $\sim 1\%$ of the binding to the envelope of the star?

Massive star evolution

Stage	Timescale	Fuel or product	Ash or product	Temperature (10 ⁹ K)	Density (gm cm ⁻³)	Luminosity (solar units)	Neutrino losses (solar units)
Hydrogen	11 Myr	Н	He	0.035	5.8	28,000	1,800
Helium	2.0 Myr	He	C, 0	0.18	1,390	44,000	1,900
Carbon	2000 yr	С	Ne, Mg	0.81	2.8×10^{5}	72,000	3.7×10^{5}
Neon	0.7 yr	Ne	O, Mg	1.6	1.2 × 10 ⁷	75,000	1.4×10^{8}
Oxygen	2.6 yr	O, Mg	Si, S, Ar, Ca	1.9	8.8×10^{6}	75,000	9.1×10^{8}
Silicon	18 d	Si, S, Ar, Ca	Fe, Ni, Cr, Ti,	3.3	4.8×10^{7}	75,000	1.3×10^{11}
Iron core collapse*	\sim 1 s	Fe, Ni, Cr, Ti,	Neutron star	>7.1	$> 7.3 \times 10^{9}$	75,000	$> 3.6 \times 10^{15}$

Table. From Woosley and Janka 2005. **Figure.** From Janka et al 2012.

- Massive stars burn bright and fast
- A degenerate iron core is created at the center of the star
- Once the mass of the iron core goes above the Chandrasekhar mass the core collapses.

Explosion mechanism (I)

1. An iron core is formed in the star

2. The iron core becomes unstable and collapses under its own self-gravity

Explosion mechanism (III)

3. The inner-core bounces once it reaches nuclear density and launches a shock wave

Explosion mechanism (IV)

4. The shock runs out of energy and stalls

Explosion mechanism (V)

5. Neutrinos revive the shock?

Explosion mechanism (VI)

- 6. The proto-neutron star cools down over a minute
- 7. The shock wave reaches the surface in ${\sim}12h$ to a day

Core collapse and bounce

Figure. From E. Müller, Saas-Fee Advanced Course 27 (1997).

- Neutrinos are trapped when $\rho \gtrsim 10^{12} \, \text{g/cm}^3 \implies$ core-collapse is close to adiabatic.
- Inner core mass is $M_{\rm IC}$ \sim $0.5\,M_{\odot}$, independent on the progenitor, it is set by nuclear physics.
- Core bounce is triggered by transition from electron-dominated $\Gamma = \frac{d \log p}{d \log \rho} = \frac{4}{3}$ to nuclear repulsion force $\Gamma = 2 3$.

Figure. $t - t_{\text{bounce}} = 0$. From Liebendörfer et al. (2001).

Figure. $t - t_{\text{bounce}} = 1 \,\text{ms.}$ From Liebendörfer et al. (2001).

Figure. $t - t_{\text{bounce}} = 10 \text{ ms.}$ From Liebendörfer et al. (2001).

Figure. $t - t_{\text{bounce}} = 100 \,\text{ms.}$ From Liebendörfer et al. (2001).

Accretion phase

Figure. $t - t_{\text{bounce}} = 500 \,\text{ms.}$ From Liebendörfer et al. (2001).

Accretion phase

Why does the shock stall?

- ${\sim}2\mathrm{B}$ lost to the neutrino burst
- Energy lost to dissociation

 $\dot{E}_{\rm diss} \sim 1.7 \, \dot{M}_{-1} \, \mathrm{B}$

Key neutrino processes

 $e^{-} + p \leftrightarrow \nu_e + n$ $e^{+} + n \leftrightarrow \bar{\nu}_e + p$

Heating and cooling are:

$$Q_{\nu_e,\bar{\nu}_e}^- \approx 2.4 \cdot \left(\frac{T}{1\,\mathrm{MeV}}\right)^6 Y_{n,p} \left[\frac{\mathrm{MeV}}{\mathrm{s}\cdot\mathrm{nucleon}}\right], \qquad Q_{\nu_e,\bar{\nu}_e}^+ \approx 110 \cdot \frac{L_{52}}{r_7^2} \frac{\langle \epsilon_\nu^2 \rangle}{(15\,\mathrm{MeV})^2} Y_{p,n} \left[\frac{\mathrm{MeV}}{\mathrm{s}\cdot\mathrm{nucleon}}\right]$$

Accretion phase

$$Q_{\nu_e,\bar{\nu}_e}^- \approx 2.4 \cdot \left(\frac{T}{1\,\mathrm{MeV}}\right)^6 Y_{n,p} \left[\frac{\mathrm{MeV}}{\mathrm{s}\cdot\mathrm{nucleon}}\right], \qquad Q_{\nu_e,\bar{\nu}_e}^+ \approx 110 \cdot \frac{L_{52}}{r_7^2} \frac{\langle \epsilon_\nu^2 \rangle}{(15\,\mathrm{MeV})^2} Y_{p,n} \left[\frac{\mathrm{MeV}}{\mathrm{s}\cdot\mathrm{nucleon}}\right]$$

The pressure is dominated by radiation and relativistic e^- , e^+ : $p \propto \rho^{4/3} \propto T^4$. The subsonic accretion flow has $v_r \propto r$, $\rho v_r r \sim \text{const}$, so $\rho \propto r^{-3}$ and $T \propto r^{-1}$. Then

$$Q_{\nu_e,\bar{\nu}_e}^- \sim r^{-6}, \qquad Q_{\nu_e,\bar{\nu}_e}^+ \sim r^{-2},$$

so there is a region where heating > cooling (gain layer)!

Critical luminosity

Figure. From Burrows and Ghosy 1993.

Modeling requirements

- Gravity
 - General relativity
- Microphysics
 - EOS of dense matter
 - NSE, nuclear burning, electron capture rates
- Neutrino-radiation hydro
 - Must solve Boltzmann equation in 7D
 - Oscillations?
 - MHD effects
- Multi-dimensional effects and turbulence

Predictions from modern simulations

t = 0.010 s

Shock radii

Figure. From Burrows and Vartanyan (2020).

Explosion energies

Figure. From Burrows and Vartanyan (2020).

Which stars explode?

Figure. From Tsang et al. (2022)

- Compactness or ZAMS mass are not useful criteria for explodability.
- The Si-O density drop is critical to trigger an explosion.
- Explosion does not mean no black hole formation.

Problem solved?

Figure. From Burrows and Vartanyan (2020).

SN1987a

27/42

Supernova theory status

- What is missing?
 - Magnetic fields?
 - Better progenitor models and rotation?
 - Quantum effects in the neutrino sector?
 - \circ BSM physics?
- Other open questions
 - Weird supernovae, GRB connection
 - Origin of pulsar magnetic fields
 - Connection with SN remnants morphology
 - \circ Nucleosynthesis from CCSNe

From Mösta et al. (2014).

Gravitational waves

Figure. From Abdikamalov, Pagliaroli, & Radice (2020).

Rotating collapse

Figure. From Abdikamalov, Pagliaroli, & Radice (2020).

Low-T/|W| instability

Figure. From Shibagaki et al. (2020).

Low-T/|W| instability

Gravitational waves from nonrotating SNe

Gravitational waves from nonrotating SNe

Figure. From Radice et al. (2019).

- Signal is dominated by the oscillation modes of the PNS
- Excitation mechanism? Chaotic accretion [Radice+ 2019, Andresen+ 2021] vs PNS inner convection [Andresen+ 2017, 2019; Mezzacappa+ 2022].

Detections prospects

- Prospects for detection are not great with current gen observatories
- Next-generation detectors (ET, CE, NEMO) can detect nonrotating CCSNe in the galaxy at high-SNR, and fast rotating collapse to distances of a few Mpc.

On the blackboard: bolometric light curves

From Arnett, Supernovae and Nucleosynthesis, 1999

The peak timescale for the light curve can be estimated as

$$t_p = \left(\frac{\kappa M}{\beta c v}\right)^{1/2}, \qquad \beta \approx 13.8.$$

Exercise

For Thompson scattering in an hydrogen rich, ionized gas $\kappa\,{=}\,0.4\,{\rm cm}^2\,{\rm g}^{-1}$, so

 $t_p = 1.4 \cdot 10^6 \,\mathrm{s} \, M_1^{1/2} \, \kappa_{0.4}^{1/2} \, v_9^{-1/2}$

For SN1987a $v \sim 0.3 \cdot 10^9 \, {\rm cm \, s^{-1}}$ and the peak time is $t_p \approx 100 \, {\rm days}$.

Question. What is R at peak? What is M_1 ? What is the explosion energy?

Answer.

We derive on the blackboard a one-zone model:

$$\dot{E} + p \, \dot{V} = \dot{Q}_{\text{heat}} - L.$$

We show two important results

- 1. Most of the initial energy is lost to adiabatic expansion, so $K \gg E_{\rm EM}$.
- 2. The peak luminosity if $\dot{Q}_{\rm heat} \approx 0$ is

$$L \approx \frac{E_p}{\tau_{d,p}} = \frac{\beta R_p c}{\kappa M} E_p = 5.2 \cdot 10^{43} \,\mathrm{erg}\,\mathrm{s}^{-1} E_{p,50} R_{p,15} M_1^{-1} \kappa_{0.4}^{-1}.$$

3. Arnett's law: at peak $\dot{Q}_{\rm heat} \approx L$.

Figure. Bolometric light curve for SN1999em, a classical example of a Type II-P supernova. Data from Elmhamdi et al., MNRAS **338**, 939-956 (2003), figure courtesy of Dr. Giryanskaya.

Nebular phase

Figure. SN2008D optical (left) and spectra evolution (right). Credit: Gemini observatory.

- Better supernova models
 - Inclusion of GR, magnetic fields, better neutrino transport, nuclear burning
 - More realistic "3D" stellar evolution models, binary stellar evolution
 - Extension to several seconds and then to breakout
- Observational data
 - Light curves from millions of supernovae, many spectra, progenitor images, etc.
 - Preparing for the next galactic CCSN
- Peculiar supernovae
 - Hypernovae, BH forming supernovae, LGRB
 - Ultra-stripped supernovae, accretion-induced collapse of white dwarfs
 - White-dwarf neutron-star mergers

References

- Abdikamalov, E., Pagliaroli, G., and Radice, D., "Gravitational Waves from Core-Collapse Supernovae", In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. doi:10.1007/978-981-15-4702-7_21-1
- Athem W. Alsabti, Paul Murdin, *Handbook of Supernovae*, Springer Nature 2017, doi:10.1007/978-3-319-20794-0
- Arnett, *Supernovae and Nucleosynthesis*, Princeton University Press 1999
- Burrows, A. and Vartanyan, D., "Core-collapse supernova explosion theory", *Nature*, vol. 589, no. 7840, pp. 29–39, 2021. doi:10.1038/s41586-020-03059-w.
- Mezzacappa, A., Endeve, E., Messer, O. E. B., and Bruenn, S. W., "Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse supernovae", *Living Reviews in Computational Astrophysics*, vol. 6, no. 1, 2020. doi:10.1007/s41115-020-00010-8.