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Neutron star mergers 2/44

Learning objectives

� Key ideas in numerical relativity

� The physics in neutron-star black-hole and double neutron-star mergers



Why numerical relativity? 3/44

� Gravitational wave astronomy needs accurate theoretical predictions to interpret observations

� Understand the dynamics of core-collapse supernovae, mergers, gamma-ray bursts, . . .

� Enable multi-messenger astrophysics



ADM Formalism 4/44
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Figure. From spacetime to back to space and time.
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Three metric and external curvature 5/44

The three metric defines distances on the 3-hypersurface: ds2= ik dxi dxk.

xi
xi+ �xi

n~

�ni=¡K k
i �xk

�t

The external curvature is defined as

K��=¡ �
�  �

� r�n�:

The external curvature measures the rate of change
of n~ across �t.

The extrinsic curvature can also be defined in terms of the Lie derivative of ik:

Kik=¡
1
2
Ln~ ik=¡

1
2�

(@t+L�~) ik:

The trace of the extrinsic curvature measures
the expansion of the worldlines of the normal
observers:

K =¡r�n
�:



ADM Equations 6/44

The ADM equations are obtained by taking projections of Einstein's field equations:

Hamiltonian constraint R+K2¡KikK
ik= 16� �

Momentum constraint DkK i
k ¡DiK =8�Si

Evolution of ik @t ik¡L�~ ik=¡2�Kik

Evolution of Kik @tKik¡L�~Kik=8�
¡
Sik¡ 1

2
ik (S ¡ �)

�
¡DiDk�+� (Rik¡ 2KijK k

j +KKik)

� Two constraint equations. Analogous to Gauss' law in E&M theory.

� Two evolution equations. Analogous to Faraday's and Ampere's laws in E&M.

� The ADM equations are weakly hyperbolic (unstable).



The initial data problem 7/44

How many degrees of freedom are there in the theory?

12||{z}}
ik;Kik

¡ 4||{z}}
gauge

¡ 4||{z}}
constraints

= 4||{z}}
h+;�;h_+;�

Ideally, we would like to prescribe (ik;Kik) at t=0 as the initial data. However, ik and Kik

need to satisfy the constraints . . .

� We need to specify only a portion of the initial data and compute the rest using the Hamil-
tonian and momentum constraint.

� It is not obvious how to choose: an unwise choice would lead to a mathematical problem
without solutions.

Two standard approaches:

1. Conformal decomposition (Bowen-York initial data).

2. Conformal thin sandwich formalism



Bowen-York initial data 8/44

In Bowen-York initial data we set:

ik=  4 �
ik
=  4 �ik; Kik=  ¡2

�
2D� (iW k)¡ 2

3
�ikD�jW j

�
:

The Hamiltonian and momentum equations are then solved for  and W i.

� The resulting set of equations (Lichnerowicz equations) is well posed.

� The equation for W i can be solved analytically:

W i=¡ 1
4 r

�
7P�i+ P�jxjxi

r2

�
¡ 1
r3
"� k
ij J�jxk;

where "�ijk= [ijk], and P�i and J�i are freely specified constant vectors.

� A Schwarzschild black hole has

 =1+ m
2 r
; W i=0:

� Most common application: puncture initial data.
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Consider the Schwarzschild metric
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The spatial part of the metric is conformally flat:

ik=  4 fik;  =1+
m
2 r
:

From Gourgouhlon, 3+1 Formalism in General Relativity ,
Lecture Notes in Physics 846 (2012).

We make the coordinate transformation r 7! r̂=
m2

4 r
. This leaves the point R=2m, r= r̂=m/2 and

dl2=
�
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�
4
[dr̂2+ r̂2 d
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So at r! 0 the spacetime is actually flat. Note, however that the term
1¡ m

2 r

1+
m

2 r

changes sign at r=m/2.
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The conformal thin sandwich combines constraint and evolution equations.

The most commonly used XCTS formalism has free data

�ik; u�ik := @t �ik; K; @tK:

This approach is very general and used for NS-NS and BH-NS initial data, but more complex to
implement, not so well understood mathematically.
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The Z4 formalism extends Einstein equations as (Gundlach et al. 2005)
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g��R+r�Z�+r�Z�¡�1 [t�Z�+ t�Z�¡ (1+�2) g�� t�Z�] = 8�T��:

This systems recovers the Einstein equations when Z�=0.

With the definition �=¡Z�n�, the 3+1 form of the Z4 system reads

(@t¡L�~) ik = ¡2�Kik;

(@t¡L�~)Kik = 8�
¡
Sik¡ 1

2
ik (S ¡ �)

�
¡DiDk�+� [Rik+DiZj+DjZi¡ 2KijK k

j

+(K ¡ 2�)Kik¡�1 (1+�2) ik�];

(@t¡L�~)� = �
2

h
R+(K ¡ 2�)K ¡KikK

ik¡ 16� �+2DjZ
j

¡ 2 @j�

�
Z j¡ 2 (2+�2)�1�

i
;

(@t¡L�~)Zi = �
h
DkK i

k ¡DiK ¡ 8�Si+ @i�¡ @i�

�
�¡ 2Ki

kZk¡�2Zi
i
:

Constraints become evolution equations. Strongly hyperbolic. GH is a special case of Z4.



Z4c system 12/44

Introduced by Bernuzzi and Hilditch (2010).

� It is a conformal decomposition of Z4 that drops non principal terms.

� The resulting set of equations is very similar to BSSN, but strongly hyperbolic.

� Use puncture gauge to handle singularities without excision.

Figure. Hamiltonian constraint violation for BSSN (right) and Z4c (left) in a binary neutron star merger
simulation. Hilditch, et al. (2013).



Kruskal-Szekeres diagram 13/44



Gauge conditions 14/44

Figure. Schwarzschild slicing (left), Reinhart/Estabrook slicing (right). From Gourgouhlon 2012.

Puncture codes use variants of the moving puncture gauge (Bona+ 1995; Alcubierre+ 2003):

@t�¡ �j @j�=¡2�K:



Generalized harmonic condition 15/44

The generalized harmonic gauge condition is an alternative way of fixing the gauge condition
and transforming the Einstein equations into a set of evolution equations and constraints that
does not make use of the ADM equations.

The coordinates are assumed to satisfy an inhomogeneous wave equation:

r�r�x�=H�;

where H� is a prescribed function of the coordinates (H�=0 leads to the harmonic gauge).
The LHS of the equation can be written as

r�r�x�= 1
jg j1/2

@� (jg j1/2 g��)=¡¡�=¡g�� ¡ ��
� ;

where ¡ �
� are the four-dimensional Christoffel symbols.

The GHG then reads

¡�=¡H�:
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The generalized harmonic formulation is obtained by replacing derivatives in the Ricci tensor
with ¡� and then setting ¡�=¡H�:

R��=¡
1
2
g�� @� @� g��¡r(�H�)+ g� g"' (@" g� @' g��¡¡�"¡��');

where ¡��= g��¡ �
� .

In vacuum Einstein equations are simply R��=0. In the GHG, these equations take the form
of a nonlinear wave equation:

g�� @� @� g��=¡2r(�H�)+2 g� g"' (@" g� @' g��¡¡�"¡��'):

With constraints now given by

C�=¡�+H�=0:

The first-order reduction of this system of equations is implemented in SpEC (SXS collaboration).



Linearized gravity 17/44

Consider a small perturbation around flat background: ik= �ik+hik. Einstein equations say

@t
2hik=r2hik¡ @i¡k¡ @k¡i:

The ¡i's are defined as

¡i= @mh i
m ¡ 1

2
@ih:

Note that in the TT gauge ¡i� 0. Harmonic coordinates are a generalization of the TT gauge!
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Relativistic hydrodynamics 18/44

Matter is evolved using the conservation laws of energy and momentum:

r�T
��=0;

where

T��=T��
(hd)+T��

(rad)+T��
(em):

These equations are closed using

� Constitutive relations, such as the equation of state p= p(�; T ; fYig) and the Ohm's law.

� Conservation, balance laws for the different particle species:

dYA
ds

=u�r�YA=
X
B

(RB!A¡RB!A):

� The Boltzmann equations for the conservation of the neutrino number in phase space

p�
�
@F
@x�

¡¡ �
� p

@F

@p�

�
=C[F ]:



Numerical methods 19/44

The approach followed in all numerical relativity codes is
to discretize first in space then in time (method of lines).

Example.

@tu+ @xu=0=) dui
dt

=¡ui+1¡ui¡1
2�x

:

Derivatives can be discretized using finite-differences, spec-
tral, or Galerkin methods.

So-called high-resolution shock capturing schemes (HRSC)
are needed to handle shocks in the (M)HD equations.

Exercise. Choose a recent numerical relativity paper.

� Which formulations were used to create the initial data and to evolve the Einstein's equations?

� Which numerical methods and codes were used? Are they publicly available?

� Which steps would be necessary to reproduce the work?
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The dynamics of neutron star mergers 20/44

Figure. From Bartos, Brady, and Márka (2013).



Tidal disruption in BHNS mergers 21/44

Figure. EM dark BHNS merger, from Kyutoku et al. (2021).
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Figure. EM bright BHNS merger, from Kyutoku et al. (2021).



Tidal disruption in BHNS mergers 23/44
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self-gravity of the star:
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rms>rISCO:

Figure. Predicted disk mass in BHNS mergers from Foucart 2012.

Fitting formulas have been constructed for ejecta and
disk mass from BHNS using rISCO, MBH, RNS, MNS.

Similar fits also exist for NSNS mergers, but they are
much less accurate.

See Krüger and Foucart (2020), Nedora et al. (2022).
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Figure. From Radice, Bernuzzi, & Perego (2020)



Binary NS merger dynamics 25/44



Disk formation 26/44

Figure. From Bernuzzi et al. (2020)



Multimessenger parameter estimation 27/44

� Different pipelines exist employing different fits, but all based on the same simulations.

� Excluding cases with large q, the ejecta is dominated by late-time winds .



Long-term evolution of binary NS merger remnants 28/44

Figure. Remnants at the end of the GW dominated phase of the evolution. From Radice et al. (2018).



Long-term evolution of binary NS merger remnants 29/44

Figure. From Nedora et al. (2020) Figure. From Radice & Bernuzzi (2023)

� Evolution of massive NS merger remnants is not well understood

� Outcome of mergers depends on complex interplay of MHD turbulence and neutrino physics



AT2017gfo 30/44

Figure. From Villar et al (2017)



Spiral-wave driven wind 31/44

Figure. From Nedora et al. (2020)



Spiral-wind wind 32/44



MHD-driven winds 33/44

Figure. From Metzger et al. (2018) Figure. From Mösta et al. (2020)

Figure. From Curtis et al. (2023)



Interplay between MHD- and spiral-wave driven winds 34/44

Figure. From Combi & Siegel (2023)

� Strong magnetic fields can suppress the low-T / jW j instability

� What is the timescale for dynamo action in NS mergers?



Dynamo action in NS mergers 35/44

Figure. From Kiuchi et al. (2023)



Hyperaccreting black holes 36/44

Figure. Equilibrium Ye and phase diagram for neutrino-cooled accretion disks. From Beloborodov (2008).



Viscously-driven winds 37/44

Figure. From Fernández and Metzger (2013)



Long-term evolution of disks in numerical relativity 38/44

Figure. From Fujibayashi et al. (2023)



Red or blue? Can we really explain AT2017gfo? 39/44

Fernández and Metzger showed that disk evaporation winds can be very neutron rich (red
kilonova), unless irradiated by a massive neutron star remnant (blue kilonova):

When BH formation is relatively prompt (�100 ms), outflows from the disc are sufficiently neutron
rich [ . . . ] In contrast, delayed BH formation allows neutrinos from the HMNS to raise the electron
fraction in the polar direction.

Metzger and Fernandez (2014)

AT2017gfo had both a blue and a red kilonova.

� The expansion velocity and total mass of the blue kilonova made it challenging to explain
with winds and the mass is too large for the shocked ejecta.

� The red kilonova has vej and Ye consistent with disk winds (too slow for the dynamical
ejecta), but Mej implies a very massive disk, optically thick to neutrinos.

Several models are now available to explain the blue kilonova (spiral-wave wind, MHD).

New simulations show that the Ye of the disk wind ejecta is large, even for disks around BHs
(Fujibayashi et al. 2023; Just et al. 2023). What is missing?
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Postmerger gravitational waves 41/44

Figure. From Bauswein et al. (2015) Figure. From Bernuzzi et al. (2015)

� The postmerger spectrum has characteristic frequencies that depend on the EOS

� The dominant frequency is fpeak or f2 and is 2
rot of the remnant.

� Large literature, many ideas: Takami+ 2014; Bernuzzi 2015, Rezzolla+ 2016; Dietrich+
2016; Breschi+ 2019; Bauswein+ 2019; Prakash+ 2021; Espino+ 2023 :::



Constraining the EOS with postmerger GWs 42/44

Figure. From Breschi et al. (2022)

� Binding energy of the remnant (Radice+ 2016)

� Phase transitions (Bauswein+ 2019; Prakash+ 2022; Espino+ 2023)

� Finite temperature effects (Fields+ 2023; Raithel+ 2023)



Future directions 43/44

� Long-term evolution of massive neutron star remnants formed in mergers

� Gravitational waves modeling

� Waveform models for next-generation detectors

� Dynamical tides, excitation of modes in the stars

� Post-merger signal: microphysics and MHD effects

� Mass ejection and nucleosynthesis

� Self-consistent long-term evolution of NS mergers

� Better neutrino transport

� Neutrino oscillations

� Self-consistent kilonova / merger models



References 44/44

� T. Baumgarte and S. Shapiro, Numerical Relativity: Solving Einstein's Equations on the
Computer , Cambridge University Press (2010).

� A. M. Beloborodov, AIP Conf. Proc. 1054 (2008), 51 doi:10.1063/1.3002509.

� R. Fernández and B. D. Metzger, Ann. Rev. Nucl. Part. Sci. 66 (2016), 23-45
doi:10.1146/annurev-nucl-102115-044819.

� K. Kyutoku, M. Shibata and K. Taniguchi, Living Rev. Rel. 24 (2021) no.1, 5
doi:10.1007/s41114-021-00033-4.

� M. Shibata and K. Hotokezaka, Ann. Rev. Nucl. Part. Sci. 69 (2019), 41-64
doi:10.1146/annurev-nucl-101918-023625.

� D. Radice, S. Bernuzzi and A. Perego, Ann. Rev. Nucl. Part. Sci. 70 (2020), 95-119
doi:10.1146/annurev-nucl-013120-114541.


	Learning objectives

