

Neutrino mass

Neutrino mass

Cosmology

$$\Sigma = \sum_{i} m_{i}$$

Neutrinoless ßß decay

$$m_{\beta\beta} = |\sum_{i} U_{ei}^2 m_i|$$

ß-decay kinematics

$$m_{\beta} = \sqrt{\sum_{i} |U_{ei}^2| m_i^2}$$

Questions for today

How to measure the neutrino mass from cosmology

...and from $0\nu\beta\beta$?

...and directly?

What can we learn if we measure nothing?

Neutrino mass

Cosmology

$$\Sigma = \sum_{i} m_{i}$$

Neutrinoless BB decay

$$m_{\beta\beta} = |\sum_{i} U_{ei}^2 m_i|$$

ß-decay kinematics

$$m_{\beta} = \sqrt{\sum_{i} |U_{ei}^2| m_i^2}$$

Neutrinos as cosmic arcitects

Neutrinos as cosmic arcitects

Cosmological probes

Cosmic microwave background

- CMB temperature anisotropy
- CMB polarization
- CMB lensing

Galaxy surveys

- 3-d galaxy distribution
- weak lensing at different redshift
- Lyman- α forest

Missions

Cosmic microwave background

- Planck satellite
- Simons Observatory (1808.07445)
- CMB-S4 (1610.02743)
- LiteBIRD (1801.06987)

Galaxy surveys

- EUCLID (1110.3193)
- LSST (Vera Rubin Obs.) (0912.0201)
- WFIRST (now: NGRST) (1208.4012)

• Observable: sum of neutrino mass eigenstates: $m_{\Sigma} = \sum_i m_i$

Current best limits:

Planck 2018: arXiv:1807.06209v1

- $\sum m_{\nu} <$ 540 meV (TT + lowE)
- $\sum m_{\nu} <$ 260 meV (TTTEEE + lowE)
- $\sum m_{\nu} <$ 240 meV (TTTEEE + lowE + lensing)
- $\sum m_{\nu} < 120 \text{ meV}$ (TTTEEE + lowE + lensing + BAO)

Where do we go?

Current best limits:

Planck 2018: arXiv:1807.06209v1

• $\sum m_{\nu} <$ 120 - 540 meV

Future missions:

- $\sigma(\sum m_{\nu}) \sim 50 \text{ meV (CMB)}$
- $\sigma(\sum m_{\nu}) \sim 20 \text{ meV (CMB + BAO)}$
- $\sigma(\sum m_{\nu}) \sim 10 \text{ meV (CMB + BAO + LSS)}$

Careful:

cosmology sees the amount of hot dark matter not a direct neutrino mass measurement = model-dependent

Questions for today

How to measure the neutrino mass from cosmology

...and from $0\nu\beta\beta$?

...and directly?

What can we learn if we measure nothing?

- Neutrinos are hot dark matter and wash out small scale structure
- Imprint in CMB and LSS
- Sensitivity at $\sum m_{\nu} < 0.2 \text{ eV}$

Neutrino mass

Cosmology

$$\Sigma = \sum_{i} m_{i}$$

Neutrinoless & decay

$$m_{\beta\beta} = |\sum_{i} U_{ei}^{2} m_{i}|$$

ß-decay kinematics

$$m_{\beta} = \sqrt{\sum_{i} |U_{ei}^2| m_i^2}$$

The nature of neutrinos

Helicity of Neutrinos

$$p \rightarrow n + e^+ + \nu_e$$

Neutrinos are left-handed

$$n \rightarrow p + e^- + \bar{\nu}_e$$

Antineutrinos are right-handed

Helicity of Neutrinos

Majorana: "That's the only difference"

Dirac:"There is a more fundamental difference between the two"

How can we test who is right?

Dirac:
"The neutrino is not identical to the known antineutrino"

Majorana:
"The neutrino is
identical to the
known antineutrino"

How can we test who is right?

 $n \rightarrow p + e^- + \bar{\nu}_e$

How can we test who is right?

$$n \to p + e^- + \bar{\nu}_e$$

$$n \rightarrow p + e^- + \bar{\nu}_e$$

Dirac: "The reaction is not possible"

Majorana: "This reaction should be possible."

Neutrinoless double beta decay: signature

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁰Pd, ¹¹⁶Cd, ¹²⁴Sn, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

Neutrinoless double beta decay

If $0\nu\beta\beta$ was discovered:

- Proof that Majorana is right
- Discovery of matter-creating process
 → shed light on matter-anti-matter asymmetry
- Lepton number is violated

• Half life reveals neutrino mass $\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q,Z) \cdot |M^{0\nu}|^2 \cdot m_{\beta\beta}^2$

The Challenge

• What do we need to realize an experiment?

The Challenge

Key requirements:

- Large exposure (tonne-scale)
- Excellent energy resolution (~ 1% @ $Q_{\beta\beta}$)
- Low background (< 1 cts/year/t/ROI)

 Observable: Coherent sum of neutrino mass eigenstates:

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^{2} m_{\nu i} \right|$$

• Current limits (GERDA): $T_{1/2} > \mathcal{O}(10^{26} \text{ y}) (90\% \text{ CL})$ $m_{\beta\beta}^{7.5} < \mathcal{O}(100) \text{ meV}$ Phys. Rev. Lett. 117 (2016), 082503

Phys. Rev. Lett. 120 (2018) 132503

• Current limits (GERDA): $T_{1/2} > \mathcal{O}(10^{26} \text{ y}) (90\% \text{ CL})$ $m_{\beta\beta}^{-,-} < \mathcal{O}(100) \text{ meV}$ Phys. Rev. Lett. 117 (2016), 082503

Phys. Rev. Lett. 120 (2018) 132503

 Goal of future experiments: Probe inverted mass ordering

Experimental efforts

Phonons

AMORE, Super-NEMO-Demonstrator, COBRA, CANDLES, and many more

Experimental efforts

Germanium Semiconductors

- ✓ Enrichment to 87% in 76 Ge ($Q_{\beta\beta}$ =2039 keV)
- ✓ Excellent energy resolution (0.12% FWHM @ $Q_{\beta\beta}$)
- ✓ Pulse-shape-discrimination against background

LEGEND (76Ge)

Majorana
GERDA (76Ge)

Ionization

LEGEND

- **LEGEND-200:** running with ~100 detectors
- **LEGEND-1000**: 1000 kg of Ge (staged)
- $T_{1/2}$ (3 σ DS) > 10^{28} yr, $m_{\beta\beta}$ < 10 17 meV

Questions for today

How to measure the neutrino mass from cosmology

- Neutrinos are hot dark matter and wash out small scale structure
- Imprint in CMB and LSS
- Sensitivity at $\sum m_{\nu} < 0.2 \text{ eV}$

...and from $0\nu\beta\beta$?

...and directly?

What can we learn if we measure nothing?

- Half life of the $0\nu\beta\beta$ decay depends on mass of neutrino
- Signal = peak at $Q\beta\beta$
- Sensitivity at $m_{\beta\beta}$ < 0.2 eV

Neutrino mass

Cosmology

$$\Sigma = \sum_{i} m_{i}$$

Neutrinoless BB decay

$$m_{\beta\beta} = |\sum_{i} U_{ei}^2 m_i|$$

10°

 10^{-1}

Σ (eV)

ß-decay kinematics

$$m_{\beta} = \sqrt{\sum_{i} |U_{ei}^2| m_i^2}$$

Direct neutrino mass measurement

Non-zero neutrino mass distorts the spectrum close to the endpoint

- ✓ Independent of cosmology
- ✓ Independent of neutrino nature

Direct neutrino mass measurement

The challenge

• What do we need to realize an experiment?

The challenge

What do we need to realize an experiment?

✓ Ultra-strong radioactive source (10¹¹ decays/s)

✓ Excellent energy resolution (~ 1 eV, 0.005%)

✓ Low background (< 100 mcps)</p>

Where do we stand?

Observable:

•
$$m_{\beta} = \sqrt{\sum_i |U_{ei}|^2 \cdot m_i^2}$$

Where do we stand?

Where do we stand?

Observable:

•
$$m_{\beta} = \sqrt{\sum_i |U_{ei}|^2 \cdot m_i^2}$$

region close to ß end point

Cyclotron Radiation

MAC-E-Filter

MAC-E-Filter

$$E_T^{center} = E_T^{start} \cdot \frac{B^{center}}{B^{start}} \rightarrow E_T^{center,max} = E \cdot \frac{B^{center}}{B^{start}} \approx 2 \text{ eV}$$

Tritium source

- 100 μg of gaseous T_2
- $10^{11} T_2 decays/s$

Tritium source

- 100 µg of gaseous T₂
- 10¹¹ T₂ decays/s

Transport section

- Guidance of electrons
- Removal of tritium

Tritium source

- 100 µg of gaseous T₂
- 10¹¹ T₂ decays/s

Transport section

- Guidance of electrons
- Removal of tritium

Spectrometer

- Electrostatic filter
- MAC-E filter principle

Tritium source

- 100 µg of gaseous T₂
- $10^{11} T_2 decays/s$

Transport section

- Guidance of electrons
- Removal of tritium

Spectrometer

- Electrostatic filter
- MAC-E filter principle

||||

Detector

- Counts electrons
- Rate vs potential

Latest results

First campaign:

total statistics: 2 million events

• best fit: $m_{\nu}^2 = (-1.0^{+0.9}_{-1.1}) \text{ eV}^2 \text{ (stat. dom.)}$

• limit: $m_{\nu} < 1.1 \text{ eV (90\% CL)}$

PRL. 123, 221802 (2019) Phys. Rev. D 104, 012005 (2021)

Second campaign:

total statistics: 4 million events

• best fit: $m_v^2 = (0.26^{+0.34}_{-0.34}) \text{eV}^2 \text{ (stat. dom.)}$

• limit: $m_{\nu} < 0.9 \text{ eV (90\% CL)}$

Nat. Phys. **18**, 160–166 (2022)

• Combined result: $m_{
m v} < 0$. 8 eV (90% CL)

Latest results

✓ Search for relic big-bang neutrinos

✓ Search for violation of Lorentz invariance arxiv:2207.06326 (2022)

induced electron

Beta-decay spectrum

 $m_{\nu} > 0$

 $m_{\nu} c^2$

Electron energy

✓ Search for light sterile neutrinos

Phys. Rev. Lett. 126, 091803 (2021) Phys. Rev. D 105, 072004 (2022)

KATRIN Data Taking Overview

- Commissioning
- Only 0.5% tritium

 EPJ C 80, 264 (2020)
- 1^{st} m_{ν} campaign
- $m_{\nu} < 1.1 \text{ eV}$

PRL. 123, 221802 (2019)
Phys. Rev. D 104, 012005 (2021)

- 2^{nd} m_{ν} campaign
- $m_{\nu} < 0.8 \text{ eV}$

Nat. Phys. 18, 160-166 (2022)

+ sterile and relic neutrino searches:

PRL 126, 091803 (2021) PRD 105, 072004 (2022) arXiv:2202.04587 (2022)

What's next?

• Technology:

Cyclotron Radiation Emission Spectroscopy (CRES)

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{E + m_e}$$

- Advantage
 - Differential measurement
 - Source = detector

Project 8

Recent Achievements

- ✓ Proof of concept
- ✓ First tritium spectra measured $\Delta E = 2 \text{ eV (FWHM)}, \text{ b} < 3 \text{ x } 10^{-11} \text{ eV}^{-1} \text{ s}^{-1}$
- ✓ First neutrino mass limit: m_{ν} < 185 eV (90% CI.)

Next steps / challenges:

- large-volume traps (m³) (cavity resonator)
- develop atomic tritium source

• 0.04 eV sensitivity (150 meV resolution) arXiv:2203.07349 (2022)

Technology:

- Low-temperature micro-calorimetry

 A. De Rujula and M. Lusignoli, *Phys. Lett.* **118B** (1982)
- Holmium enclosed in absorber
- Measure decay energy via temperature rise

Advantage

- Differential measurement
- Source = detector

ECHo

Achievements

- ✓ first holmium spectra measured $\Delta E = 5 \text{ eV (FWHM)}, \text{ b} < 1.6 \text{ x } 10^{-4} \text{ eV}^{-1} \text{ pixel}^{-1} \text{ day}^{-1}$
- ✓ first neutrino mass limit: *m* < 150 eV (95% C.L.) *EPJ-C* 79 1026 (2019)
- ✓ refined theoretical calculations

 Phys. Rev. C 97 (2018) and New J. Phys. 22 (2020) 093018
- ✓ *ECHo-1k* completed: ~60 Bq (> 10⁸ events)

 EPJ-C 81, 963 (2021)

Next steps/challenges

- Scaling to higher activity per pixel and more pixels
- ECHo-100k: *m* < 1.5 eV

Ultimate goal:

low sub-eV sensitivity

Questions for today

How to measure the neutrino mass from cosmology

- Neutrinos are hot dark matter and wash out small scale structure
- Imprint in CMB and LSS
- Sensitivity at $\sum m_{\nu} < 0.2 \text{ eV}$

...and from $0v\beta\beta$?

• Half life of the $0\nu\beta\beta$ decay depends on mass of neutrino

• Signal = peak at $Q\beta\beta$

• Sensitivity at $m_{\beta\beta}$ < 0.2 eV

...and directly?

What can we learn if we

measure nothing?

- Neutrino mass reduces energy of beta
- Distortion of beta spectrum close to endpoint
- Sensitivity at m_{β} < 0.8 eV

Complementarity

Puzzle 1: If Project-8 would measure a neutrino mass and LEGEND would not observe a signal

Puzzle 2: If LEGEND would see a signal and Project-8 would not measure the neutrino mass...

Complementarity

Puzzle 1: If Project-8 would measure a neutrino mass, **but** LEGEND would not observe a signal

- ➤ Neutrino is a Dirac particle
- ➤ (Or something is very wrong with our understanding of nuclear/neutrino physics)

Puzzle 2: If LEGEND would see a signal, but Project-8 would not measure the neutrino mass...

➤ different lepton number violating mediator than light Majorana neutrino exchange

Questions for today

How to measure the neutrino mass from cosmology

- Neutrinos are hot dark matter and wash out small scale structure
- Imprint in CMB and LSS
- Sensitivity at $\sum m_{\nu} < 0.2 \text{ eV}$

...and from $0\nu\beta\beta$?

- Half life of the $0\nu\beta\beta$ decay depends on mass of neutrino
- Signal = peak at Qββ
- Sensitivity at $m_{\beta\beta}$ < 0.2 eV

...and directly?

- Neutrino mass reduces energy of beta
- Distortion of beta spectrum close to endpoint
- Sensitivity at $m_{\beta} < 0.8 \text{ eV}$

What can we learn if we measure nothing?

- Probes measure different combinations of mi
- Observables are complementary
- We need all three of them

Back up

Let's have a closer look

This is the formula for beta-decay

$$\frac{d\Gamma}{dE} = \sum_{e=0}^{\infty} |U_{e}|^{2} C \cdot F(E,Z) \cdot (E+m_{e}) \cdot (E_{0}-E) \cdot \sqrt{(E+m_{e})^{2} - m_{e}^{2}} \cdot \sqrt{(E_{0}-E)^{2} - m_{e}^{2}}$$

Electron energy

Neutrino energy

Electron momentum

Neutrino momentum

The spectrum is a weighted sum of three spectra E_0 $m_1 < 0.5 \text{ eV}$

Let's have a closer look

We measure "far away" from the endpoint

$$\frac{d\Gamma}{dE} = \sum_{e_i} |D_{e_i}|^2 C \cdot F(E, Z) \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E + m_e)^2 - m_e^2} \cdot \sqrt{(E_0 - E)^2 - m_i^2}$$

$$\sum_{i} |U_{ei}|^{2} (E_{0} - E) \sqrt{1 - \frac{m_{i}^{2}}{(E_{0} - E)^{2}}}$$

$$\approx \sum_{i} |U_{ei}|^{2} (E_{0} - E) \left(1 - \frac{1}{2} \frac{m_{i}^{2}}{(E_{0} - E)^{2}}\right)$$

$$= (E_{0} - E) \left(1 - \frac{1}{2} \frac{\sum_{i} |U_{ei}|^{2} m_{i}^{2}}{(E_{0} - E)^{2}}\right)$$

$$= \sqrt{(E_{0} - E)^{2} - \sum_{i} |U_{ei}|^{2} m_{i}^{2}}$$

Let's have a closer look

$$\frac{d\Gamma}{dE} = \sum_{e} |C_{e}|^{2} C \cdot F(E,Z) \cdot (E+m_{e}) \cdot (E_{0}-E) \cdot \sqrt{(E+m_{e})^{2} - m_{e}^{2}} \cdot \sqrt{(E_{0}-E)^{2} - m_{e}^{2}}$$

$$\frac{d\Gamma}{dE} \approx C \cdot F(E,Z) \cdot (E+m_e) \cdot (E_0-E) \cdot \sqrt{(E+m_e)^2 - m_e^2} \cdot \sqrt{(E_0-E)^2 - \sum_i |U_{ei}|^2 m_i^2}$$

$$m_{\nu}^2 \equiv \sum_i |U_{ei}|^2 m_i^2$$

incoherent sum of neutrino mass eigentstates

Helicity

$$h = \frac{\vec{S} \cdot \vec{p}}{|\vec{p}|}$$

Weak interaction does not know about helicity

Helicity of massive particle depends on reference frame

Physical particles occur with a definite helicity in nature

Chirality

$$P_L = \frac{1 - \gamma^5}{2}$$

Weak interaction projects out a chiral component of the field

Chirality is frame independent

Physical particles have no defined chirality

Chirality vs Helicity

$$n \to p + e + \overline{v}_e$$

$$v_e + n \to p + e$$

- Projection on electron neutrino flavor = super position of mass eigenstate
- The physical neutrino, is the one that propagates through space, it has a definite mass (and no definite flavor)

$$n \to p + e + \overline{v}_e$$

$$v_e + n \to p + e$$

 Projection on right-chiral component of anti neutrino field

Massless case:

 The physical neutrino appears only with right-handed helicity

$$n \to p + e + v_e$$

$$v_e + n \to p + e$$

 Projection on right-chiral component of anti neutrino field

Massive case:

 The physical neutrino appears mostly with right-handed helicity and a bit O(m/E) of left-handed helicity

LH: will be completely

absorbed

RH: A tiny bit ~O(m/E) will

be absorbed

 Projection on right-chiral component of anti neutrino field

Massive case:

- The physical neutrino appears mostly with right-handed helicity and a bit O(m/E) of left-handed helicity
- The vertex will absorb with almost no suppression the left-handed helicity neutrino and a O(m/E) fraction of the right-handed helicity neutrino
- The decay can occur, but is suppressed with m_v

Model dependence

- Beyond Λ CDM
- ➤ Bounds relaxed up to factor of ~3

Neutrino physics

 ν_4

Non-standard p or T distributions

Farzan & Hannestad 1510.02201 Oldengott et al. 1901.04352 Alvey, Escudero, Sabti, Schwetz 2111.14870v

Invisible neutrino decay

Escudero, López-Pavón, Rius, Sandner 2007.04994 Chacko et al. 1909.05275, 2112.13862

Time-dependent neutrino mass

Dvali & Funcke 1602.03191 Lorenz et al. 2102.13618

 \triangleright Bounds relaxed up to $\sum m_{\nu} <$ 3 eV