
The quantum hall effect describes electrons that are confined 
to 2 dimensions with a magnetic field perpendicular to the 
confining surface. We consider the case where Nₑ electrons 
are confined to the surface of a sphere with a radial magnetic 
field, characterized by its strength S (which must be integer or 
half-integer). Neglecting interactions, the electrons occupy 
Landau levels. The lowest Landau level, which we exclusively 
consider in this work, contains 2S+1 degenerate single-particle 
states, with each electron carrying total angular momentum S.

The fractional quantum Hall effect (FQHE) results from 
considering the Coulomb repulsion among the electrons. As 
the 2S+1 single-particle electron states of the lowest Landau 
level are degenerate, we can consider the “problem” 
Hamiltonian to be just the Coulomb interaction term

The Hilbert space of the qubits contains states with all 
allowed numbers of fermions, from zero up to the number of 
available single-particle states (or number of qubits). In 
practice, we want to obtain the ground state of the FQHE 
Hamiltonian for a particular magnetic field strength S and a 
particular number of electrons Nₑ. We add a penalty term to 
the Hamiltonian singling out the states representing the 
desired number of electrons 

We also need to penalize states with different fermionic 
magnetic quantum numbers

Even when the target ground state is non-degenerate, this 
term is necessary to avoid degeneracies during the anneal.
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FQHE is a good test problem:
1. Interaction is relatively simple, many-body physics is 
complicated
2. Lowest Landau level described by a single angular 
momentum subshell
3. Simple to scale the problem by adjusting two parameters S 
and Nₑ

Penalty Terms
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Our simulations demonstrate that quantum annealing can be 
used to obtain the ground state of interacting, many-body 
fractional quantum hall effect systems. However, even if the 
problem Hamiltonian has a unique ground state, the anneal 
may still fail due to level crossings. We find that these 
crossings can be avoided by introducing an additional penalty 
term. Currently, we are focused on understanding the behavior 
of the system near these avoided level crossings as captured 
by measures of qubit entanglement and potential signatures of 
quantum phase transitions.

We map the second-quantized fermion system to qubits using the 
Jordan-Wigner transformation 

● Fermions anticommute, but qubits commute
● Occupied fermion states ↔ spin-down qubits
● One qubit for each fermion single-particle state

We study these systems in detail by performing classical 
simulations of the annealing process using the Python library 
QuTiP [1,2]. Here, we show that the magnetic penalty term Hmz is 
necessary to avoid a level-crossing during the anneal of the 
system with S = 3/2, Ne= 2.

Conclusions and Future Work

Many problems in atomic, condensed matter, and nuclear 
physics amount to the determination of the ground state of a 
system of many interacting fermions. While numerous 
methods exist to solve such problems, they generically suffer 
from the fact that the number of many-body basis states 
grows combinatorially in the number of fermions and the 
number of accessible single-particle states.

Quantum annealing is a form of quantum computing based 
on the adiabatic theorem:
1) Goal is to obtain ground state of “problem” Hamiltonian H₁

2) Prepare system in ground state of simple Hamiltonian H₀

3) Evolve the system under time-dependent Hamiltonian

4) If change in H(t) is slow enough and there is no ground 
state energy crossings, adiabatic theorem guarantees that 
the system will be in the ground state of H₁ at time t = 1.

Our aim is to study the use of quantum annealing to solve for 
the ground state of many-fermion systems.

Above: Comparison of a failed anneal (left) with magnetic penalty term Emz=0 and a successful 
anneal (right) with Emz=1 (Hartree units). From top to bottom, the first row shows the energy 
spectrum of the time-dependent hamiltonian H(t); the second row shows the overlap of the 
annealed state with the ground state; the bottom row shows the energy gap between the ground 
and first excited states.


