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Motivation
Before QCD, with quarks and gluons, was proposed as the the-
ory of strong interactions, Gell-man and other physicists used ap-
proximate SU(2) (known as isospin) and SU(3) flavor symmetry
to describe interactions of hadrons [1]. While the SU(2) symmetry
of isospin is a good symmetry of nature due to the similar masses
of up and down quarks, SU(3) flavor symmetry is violated to the
20-30% level due to different mass of the strange quark. Under
SU(3) flavor symmetry where the up, down, and strange quarks
have identical mass, the light-quark mass matrix transforms as a
singlet, and MN = MΣ = MΛ = MΞ. However, under SU(2)
symmetry but broken SU(3) symmetry, the light quark mass ma-
trix changes to Figure 1. instead of being proportional to the iden-
tity.
Consequently, the Gell-Mann–Okubo (GMO) mass relation, T,
shown in Eq. 1, becomes non-zero when SU(3) is broken. By us-
ing Lattice QCD to study the violation of the Gell-Mann–Okubo
relation and its dependence on lattice spacing and pion mass, we
hope to explore how well SU(3) Chiral Perturbation Theory de-
scribes the results.

Figure 1. The light mass matrix under
SU(2) but not SU(3) symmetry
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The Gell-Mann-Okubo Mass Relation
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Lattice QCD
• In lattice quantum chromodynamics, time and space are discretized and

Feynman’s path integral formulation is used to calculate simulated ampli-
tudes with the help of multidimensional integration and Monte Carlo meth-
ods.

• For this project, 39 ensembles of two point correlation functions with lattice
spacings from 0.06 to 0.15 fm and pion masses from 130 to 400 MeV have
been used, courtesy of CalLat/CoSMoN.

• The spectral decomposition of a typical two point function is given in Eq. 3.
At large time it plateaus to 0.

• Using the two point functions of the baryons in the GMO relation, we can
construct the GMO correlator (Eq. 4) which behaves as a regular two point
function but with the GMO sum was its mass.

• Since each baryon correlator has excited states, we can factor out the ground
state of the GMO correlator, giving Eq. 4

• To prepare the the data, each ensemble, consisting 1000 configurations of
each baryon type with 64 or 96 timeslices each, was averaged with gvar
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Extracting the Mass Relation
• After being averaged, there are many ways to fit the data to

obtain the value of T for each ensemble
• The number of fit states, the fit range, bootstrapping vs not

bootstrapping, simultaneous vs individual fits, and choice of
free fit parameters could all be varied

• The first strategy we tried was simultaneously fitting the
baryons to two states and summing their masses to construct
the GMO value (Figure 2).

• Next, we attempted to use the GMO correlator. One thing we
noticed was that if we constructed the GMO correlator from
regular gvar averaging, the eigenvalues of the covariance ma-
trix of the baryon data and GMO correlator would have a large
discontinuity by many orders of magnitude, corresponding to
the GMO data (Figure 3).

• This eigenvalue behavior is undesirable because it means we
would be underestimating the uncertainty of the GMO corre-
lator. It can by remedied by bootstrap resampling the data and
constructing the GMO correlator from the bootstrap means.

• Once the GMO correlator was fixed, we tried a two state fit
to the correlator by itself, which gave results that were mostly
consistent with the constructed GMO value. However, the un-
certanties were still quite large.
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Left: Figure 2. Simultaneous fit to all baryons for a = 0.15fm, mπ = 135MeV.
Right: Figure 3. A graph of the ordered eigenvalues of a covariance matrix

• After this, we moved on to simultaneous fitting of the GMO
correlator and baryon correlators, using three strategies:

– Constrained EGMO and constrained AGMO

– Free EGMO but constrained AGMO

– Free EGMO and Free AGMO
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Figure 4: Various fit parameters for fit strategy 3 when the minimum of the fit range is
varied. An ensemble with lattice spacing 0.15fm and mπ = 135MeV was used.
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Figure 5: Fit parameters for fit strategy 3 when the maximum of the fit range is varied.
Same ensemble as Figure 4.

Outlook
The GMO mass relation project was put on hold recently after a closer look at
the ensembles with physical pion mass revealed that the current data would
not be good enough to produced the required accuracy or precision. However,
a project involving fits to pion, kaon, and omega correlation functions for the
purpose of scale setting has been happening in parallel with the GMO project,
and the results of that will be applicable to any efforts that use the same en-
sembles. Since the scale setting project is already underway, our focus has been
redirected to fitting the same correlation function for the purpose of hyperon
spectrum analysis, with plans to investigate the nucleon mass and nucleon-pion
sigma term once that is complete.
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