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Expanding the Pendulum Analogy
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Neutrinos come in three different flavors and masses. Each of 
these masses is in a different superposition of the 3 flavor states, 
and vice-versa. Due to the mass difference, the wave packets of 
the mass states evolve out of phase. This causes an oscillation in 
the expectation value of the flavor state of the (anti)neutrinos, as 
discovered by Bruno Pontecorvo in 1957.

Figure 1. Two neutrinos flavors and their 
admixture of masses (bins) and flavor 
expectation (colors) combined. Bar in 
parenthesis for antineutrino case. [1-3]
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Figure 2. Low Frequency Normal Mode Figure 3. High Frequency Normal Mode  

Figure 4. No Flavor Conversion Figure 5. Flavor Depolarization Figure 6. Flavor Inversion

Electron Flavor X Flavor Spring String

The basics of collective neutrino oscillations and the flavor 
pendulum were established in previous works [3-7], so we start 
from the 1-D equation for neutrino transport in Johns (2021) [8]:

The mixing between any two 
of the three flavors is given by 
the 3 mixing angles         . We 
can simplify to a 2 flavor 
system assuming that most 
conversion happens between 
those 2 flavors. Then, only one 
mixing angle is required, which 
allows us to make the 2-flavor 
pendulum analogy. Figure 1 
shows the flavor and mass in 
the two neutrino case.

We consider a 2-flavor ensemble of (anti)neutrinos with energy

          ,                ,     and                            . 

The hamiltonian term includes the vacuum oscillations and the 
neutrino-neutrino scattering:    . Where

                 ,                                 , and                 .

(1)

The collisional term        accounts for the rate of charged-current 
scattering (         ) and absorption/emission (         ) interactions. 
Neutral-current interactions are excluded since they are not flavor 
resolving in an isotropic setting. Using    , 
the equations of motion are:

Defining      and the initial neutrino density of the system:

(2)

(3)

The flavor pendulum can be better studied using the sum 
and difference vectors. We plot them, along with their 
dot product S · D, normalized to S(0).

Following a recent surge in research in the flavor 
pendulum dynamics and their unstable modes [8-12], 
we explore the different limits of the system. The 
pendulum can oscillate in synchronized mode 
(spinning top and precession in the off-diagonal plane 
x-y, Fig. 9) and bipolar mode (complete periodic flavor 
inversion, Fig. 8) without decohering. When                    , 
the bipolar mode dominates and     is conserved. The 
polarization vector is then constrained to a sphere, and 
we get a spherical pendulum. We inverse the sign of 
the antineutrino polarization to visualize the symmetry 
of this spherical pendulum. At                  , the pendulum 
is constrained to oscillate in a circle (Fig. 7). The 
conditions for bipolar oscillations to occur are given by:

Finally, because                   , collisions can enhance flavor 
mixing or decohere the system in proportion to         .

When the length of the 
polarization vector of neutrinos 
and antineutrinos is equal, we 
get:

An asymmetric polarization
(              ),  introduces 
precession around Z:

Lowering       and increasing       , 
enters the synchronized regime. 
      and        are asymmetrically 
engaging the bipolar and 
synchronized modes, which 
introduces nutation.

Collisional Instabilities 
quickstart the flavor mixing in 
proportion to              , and make        
    decay in proportion to     . 

Figure 7a. Circular Pendulum

Figure 7b. Plot

Figure 8. Spherical Pendulum

Figure 9. Synchronized mode Figure 10. Collisional instability plot


