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Dark matter direct detection

Dark matter (DM) – a hypothesized beyond-the-Standard

Model particle; accounts for the majority of matter in the

universe by mass [4]

Numerous proposed models for dark matter, such as axions and

weakly interacting massive particles (WIMPs); we will focus on

WIMPs [4]

Many properties of WIMPs are still unknown, most importantly

the mass mχ, and coupling cx
i to Standard Model particles

DM direct detection – a class of dark matter detectors that look
for scattering off of nuclei in a chamber [4]

Through non-detection, direct detectors can constrain the couplings cx
i

We analyze the uncertainty of these constraints due to

uncertainties in nuclear physics

Effective field theory forWIMP-nucleon
interactions

Total WIMP-nucleon interaction in a Galilean effective field theory

(EFT) [2]:

H =
∑

x=p,n

15∑
i=1

cx
i Oi

cx
i are the EFT couplings (a prior unknown) and Oi are the relevant

operators constructed in the EFT.

WIMP-nucleon event rate given by [3]:

dR

dEr
(Er) = NT nχ

∫
dσ

dEr
f̃ (~v)|~v| d3~v .

Differential cross section dσ/dEr dependent on nuclear response

functions W
x,x′
i , which in turn are dependent on nuclear density

matrices [3]

Monte Carlo modeling of nuclear uncertainties

We estimate uncertainties stemming from nuclear shell-model

calculations usingMonte Carlo sampling.

1. Take two nuclear shell-model interactions and calculate

reduced one-body density matrices for both.

2. For each one-body matrix element ρ
fi
J (a, b), calculate average

and standard deviation between the two models.

3. Define Gaussian distribution for each matrix element ρ
fi
J (a, b)

using averages and standard deviations calculated in step 2.

4. Populate a new density matrix by drawing each element

randomly from corresponding Gaussian distribution.

5. Repeat step 3 to create an ensemble of random density

matrices.

Variation of density matrices in ensemble estimate statistical

uncertainty of nuclear shell-model calculations. This uncer-

tainty can be propagated through to other quantities of interest

(see next column).

Determining uncertainty in experimental results
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Figure 1. Outline of Monte Carlo uncertainty analysis process.

Constraining WIMP-nucleon EFT couplings

DM direct detectors place limits on EFT couplings by determining 90%

confidence level (CL) limits (see [1])

Calculating 90% CL as function ofWIMP mass gives exclusion curve in mχ–cx
i

plane

Exclusion curves showwhich mχ, cx
i combinations have been excluded as realistic scenarios

through experimental non-detection

Example using XENON1T direct detection experiment

Model detector as a mixture of the six most abundant isotopes of xenon (so

multiple sources of nuclear uncertainty, from each isotope)

XENON1T has near zero-background, so WIMP scattering rate can be modeled

by Poisson distribution [1]

90% CL limit on EFT couplings is then cx
i value that yields average of 2.3 events per unit

exposure

Number of events per effective exposure:

dN

dt
=
∫

ε(Er)
dR

dEr
(Er)dEr

Calculate 90% CL limits of EFT couplings repeatedly for each random density

matrix; spread of the resulting exclusion curves is estimate of uncertainty.

Examples:
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Figure 2. Exclusion plot for WIMP-proton coupling through O9.
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Figure 3. Exclusion plot for WIMP-neutron coupling through O13.

Discussion

Non-zero uncertainty for many operator and nucleon

combinations

Coupling of DM to protons and neutrons through O13 has
non-trivial uncertainty

Highly asymmetric uncertainty, could benefit from improved nuclear

shell-model calculations

Performing uncertainty analysis on each xenon isotope

individually reveals different responses and uncertainty levels

for each

Conclusions and future work

We have presented a preliminary uncertainty analysis of the

EFT coupling limits obtained from a general DM direct

detection experiment.

Paper with full details to be published soon

Non-trivial uncertainty for the EFT couplings for certain operator and

nucleon combinations

Improved uncertainty quantification: start with uncertainty of

nuclear Hamiltonian matrix elements and propagate error

through

Calculations needed for this are much more computationally intensive

and time-consuming

This is an area where quantum computingwould excel

Analysis presented here could easily be extended to other DM

direct detection experiments (detectors using argon,

germanium, etc.)
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