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INTRODUCTION

• When a nearby core collapse supernova occurs, terrestrial detectors should be able
to detect thousands of neutrinos, providing us with information on their energy spec-
trum and flavor composition. These detections are expected to have uncertainties
associated with the experimental setup that need to be included in the analysis.

• By utilizing optimization techniques, we include measurement uncertainties in the
inference of unknown parameters of the flavor evolution model.

• We characterize the measurement uncertainties under the Bayesian statistics frame-
work by assuming a rather non-informative prior.

NEUTRINO FLAVOR OSCILLATIONS

In a dense neutrino environment, neutrino oscillations exhibit a synchronized behavior
known as collective neutrino oscillation creating a many-body problem. The equation of
motion of neutrino flavor oscillations in this setting is given by

d

dt
Pp = (ωpB + V (t)ẑ + µ(t)P)× Pp (1)

• ωp = δm2/(2Ep) is the vacuum oscillation frequency where δm2 is the mass squared
difference between two energy eigenstates and Ep is the associated energy.

• B is a unit vector describing the flavor mixing between the flavor and mass basis as
a function of the mixing angle α.

• Pp describes the flavor composition of neutrinos as a net difference between the
electron flavor and x flavor, a superposition of the muon and tau neutrinos.

• V (t) is the matter potential modeled by V (t) = V0
t3

[1].

• µ(t) is the neutrino-neutrino potential modeled by µ(t) = µ0
t4

[1].

In our problem, we will be using two neutrinos and their corresponding antineutrinos:
νe, νx, ν̄e, ν̄x. By using the optimal values for ωp, V0, µ0, and α, we simulate detector
measurements that exhibit a complete flavor transformation as shown in Fig. 1.

Fig. 1: Flavor evolution of two neutrinos, νe and νx, and two antineutrinos, ν̄e and ν̄x,
using optimal parameters.

OPTIMIZATION

Given a detector measurement shown in Fig. 1, we estimate the model parameters re-
sponsible for such a measurement by employing an inference procedure known as

statistical data assimilation (SDA). We formulated SDA as an optimization problem
wherein the cost function is minimized [2]. For our purposes, the cost function is
defined as the difference between the model prediction and measured data

Cost(θ) = [uD(R, θ)− uθ(R)]2 (2)

where uD is a measurement made at a location R and uθ(R) is the prediction from
our model (see Eq. 1) [1]. θ is an unknown parameter we seek to optimize which,
in our case, is the matter potential V0. This optimization process is shown in Fig. 2.

Fig. 2: The unknown parameter is denoted by θ. We want to find the optimal value
for θ that minimizes Cost(θ) [1].

• In the forward problem, we generate the model prediction by using neural
ODEs. The forward code is run for various values of V0 and compared to the
true value (V ∗

0 = 10) that is used to generate Fig. 1.

• In the backward update, the minimization of the cost is performed through an
optimization algorithm.

• By minimizing the cost function, we can determine the unknown parameter θ
that best matches the measurements.

To represent a more robust system, we include measurement uncertainties to the
energy, represented by ωp in Eq. 1. With this set-up, we compare the performances
of various optimization algorithms.. We found that the Adaptive Particle Swarm Al-
gorithm (APS) performed the best out of all of them by identifying a global minimum
at V ∗

0 even with various measurement uncertainties as shown in Fig. 3.

Fig. 3: Cost function dependent on unknown parameter V0 for various frequencies.
The global minimum is indicated by the black dotted line, V0

∗ = 10.

BAYESIAN ANALYSIS

Fig. 3 assumes a simple framework to examine measurement uncertainty. A more
thorough analysis on the effects of neutrino energy measurement uncertainty in
matter potential estimation can be performed with Bayesian statistics. We assume
a rather non-informative prior to estimate a posterior distribution by treating mea-
surements as samples from either a uniform or Gaussian distribution. With Markov
Chain Monte Carlo algorithms, we generate 40,000 samples from the assumed dis-
tributions. A few conclusions can be drawn from Fig. 4:

• Compared to the uniform distribution, the Gaussian distribution produced poor esti-
mations of the ideal frequency.

• The posterior variance for the Gaussian prior is larger than the posterior variance
from the uniform distribution implying a larger uncertainty in parameter estimation.

• We can conclude the Gaussian priors were less informative than the uniform priors.

Fig 4: Posterior distribution for a uniform or Gaussian prior of the neutrino frequencies.
The uniform distribution was sampled from 0.0 to 100.0. The black dotted line is the
posterior mean and the red dotted line is the ideal frequency value. The shaded region is
one sigma deviation from the posterior mean.

CONCLUSION

• By combining neural networks with differential equation solvers, we solved the neu-
trino flavor oscillation equation as a function of the unknown parameter and used
various optimization procedures to infer the parameter range of V0.

• Using this, we employed a Bayesian inference framework to assign probabilities to
the frequency, describing the associated uncertainties. We assumed non-informative
priors in the form of a uniform or normal distribution to estimate the posterior distri-
butions of the parameters.

• As the sample sizes were constant, the more informative priors produced the best
parameter estimations in the posterior distributions. A larger sample size coupled
with an informative prior might provide a better parameter estimation. Furthermore,
we can create a more realistic framework by studying a larger system of neutrinos.
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