The Equation of State of Neutron Star Matter from Considerations of Theories, Experiments, and Observations Tianqi Zhao

N3AS annual meeting, March 18, 2023

Static Neutron Star Properties

- Tolman–Oppenheimer–Volkoff(TOV) equations: $\frac{dp}{dr} = -\left(\varepsilon + p\right) \frac{d\Phi}{dr}$ $\frac{d\Phi}{d\Phi} = -\frac{G(mc^2 + 4\pi r^3 p)}{r^2 c^4 (1 - \frac{2Gm}{rc^2})}$ $\frac{dm}{dr} = 4\pi r^2 \frac{\varepsilon}{c^2}$ $d\Phi$ 3 dr
- Other Properties: Binding energy Moment of Inertia Tidal deformability Oscillating frequency

 $\bullet \bullet \bullet$

Ab-initio:

> Inter-nucleon Hamiltonian (χ EFT, ...) + Many-body method (Perturbation, Monto Carlo, ..)

- Energy density functional: Mean-field Hamiltonian + Single-body method (Hartree-Fock, ...) Schrödinger equation (Skyrme models) Dirac equation (Relativistic mean field models)
- Perturbative QCD: QCD Lagrangian (quark-gluon coupling) + Analytical method (vacuum and ring diagram)

Symmetry energy $E_{SYM}(u = n_B/n_s, x = n_p/n_B)$

Neutron star matter \approx Pure neutron matter = Symmetric nuclear matter + Symmetry energy

Maximum Mass of NS **EOS bounds**

EOS bounds with neutron matter constraints(fixed maximum mass)

- Tidal fields Quadrupole moments $-\lambda \varepsilon_{ii}(t) = Q_{ii}(t)$

Orbital phase:
$$\frac{d\Phi}{dt} = 2\omega$$

$\tilde{\Lambda} \propto R_{1.4}^6$ for Precise NS Radius

EOS Sensitivity to NS Oscillations

- p-mode are sensitive to pressure at saturation density and twice saturation density.
- f-mode are sensitive to pressure at twice the saturation density.
- Composition g-mode is sensitive to the chemical composition of dense matter, e.g. lepton and quark fractions, Y_{lep} and Y_{qak}
- Discontinuity g-mode is sensitive to phase transition properties in the core of NSs

Zhao & Lattimer 2022

Hadron-quark Transition in Neutron Star Core

Gibbs transition

Between Maxwell & Gibbs

Quark EOS

 ${\cal E}$

Between Maxwell & Gibbs Partially local & partially global

- Locally neutral lepton densities: $n_{e,N} = n_p, \ n_{e,Q} = \frac{1}{3}n_u - \frac{1}{3}n_d$
- Global lepton density, $n_{e,G}$
- Total lepton density:

11

 $n_e = g(fn_{e,N} + (1 - f)n_{e,Q}) + (1 - g)n_{e,G}$

• $g = 0 \rightarrow$ Gibbs transition

 \rightarrow Maxwell transition

• g could be related to Surface & Coulomb energy.

<u>с</u>

(MeV fm

oressure

Soft hadronic EOSs is flavored by ab-initio calculation, neutron skin experiments & neutron star merger observation.

 ${\cal E}$

Quarkyonic Matter EOS

Summary

- EOS constraints around saturation: ab-initio > experiment > observation (but improves fast)
- Maximum mass constraints EOS around four times saturation.
- Low-density extension of pQCD is marginally relevant.
- Soft-to-stiff transition is flavored.
- First-order transition is possible but needs fine-tuning.
- Quarkyonic-like models are more natural to explain all.
- Thank you!

Backup Slides

Why electron-weak probe? long. polarized $G_F = \frac{g_W^2}{4\sqrt{2}M_W^2}$ $\sin^2(\Theta_W) = 0.223$ • The only source of parity violation: $J_{Z}^{\mu} = -\frac{1}{2}\bar{\psi}_{L}\gamma^{\mu}\psi_{L} - \sin^{2}(\Theta)\bar{\psi}\gamma^{\mu}\psi = -\frac{1}{4}\bar{\psi}\left[1 - 4\sin^{2}(\Theta_{W}) - \gamma^{5}\right]\psi$

•
$$\mathscr{L} = \ldots + \frac{g_W}{\cos(\Theta_W)} J_Z^{\mu} Z_{\mu} - \frac{M_Z^2}{2} Z^{\mu} Z_{\mu}$$

- Approximately zero-range, since $M_Z \approx 500 \text{ fm}^{-1}$: $\Phi_W(r) = \int \frac{\rho_W(r')e^{-M_Z|r-r'|}}{4\pi |r-r'|} dr'^3 \approx \frac{\rho_W(r')}{M^2}$
- Weak compared with Coulomb interaction: $\Phi_W < < \Phi_E$
- $Q_p = 1 4\sin^2(\Theta_W) \quad << \quad Q_n = -1$ (0.0721 with correction) (-0.9878 with radiative correction)

Flowchart of Applying PREX and CREX Data

		CREX	PREX
O	(N,Z)	(28,20) Ca	(126,82) P
× X	q (fm-1)	0.8733	0.3977
	Fch, Rch(fm)	0.1581, 3.481	0.409, 5.50
Measured	Х Ару	2668±106(stat) ±40(syst)	550±16(sta ±8(syst)
Born Approx.	C S S W S	0.1304±0.0052(stat) ±0.002(syst)	0.368±0.013(±0.001(the
nel Fourier	K H H H H F ch-Fw H H H H H H H H H H H H H	0.0277±0.0052(stat) ±0.002(syst)	0.041±0.013(±0.001(the
	Rw	3.64±0.026(exp) ±0.023(theo)	5.8±0.075(t
ge Radius n Skin	Rw-Rch	0.159±0.026(exp) ±0.023(theo)	0.297±0.075
	Rn-Rp	0.121±0.026(exp) ±0.024(theo)	0.283±0.071
		CREX 2022	PREX I 2012 PREZ

Can CREX Measure Neutron skin?

- RMS radius: $\langle r^2 \rangle = \frac{1}{O} \int r^2 \rho(\mathbf{r}) d^3 r$ $\frac{\mathcal{Q}}{\mathcal{Q}} \int e^{i\mathbf{q}\cdot\mathbf{r}} \rho(\mathbf{r}) d^3r = 1 - \frac{1}{6}q^2 < r^2 > + \dots \overset{\text{grad}}{=} 0.1$ $\lim_{q \to 1^+} \langle r^2 \rangle = \frac{6[1 - F(q)]}{208Pb^{1-1}} = 1 - \frac{1}{6}q^2 < r^2 > + \dots \overset{\text{grad}}{=} 0.1$ $\lim_{q < <1/\sqrt{< r^2 >}} < r^2 > = \frac{6[1 - F(q)]}{a^2} \quad \frac{208Pb}{48Ca} \quad \frac{1}{1}$
 - Form factor to radius mapping is much less accurate for CREX: 1. Momentum transfer q is a bit too large for CREX. 2. MFT uncertainty increase for lighter nuclei.
 - Better use form factor to constrain nuclear model.

Perturbation on Schwarzschild metric

•
$$ds^2 = -e^{2\Phi(r)}(1 + H_0(r)e^{i\omega t}Y_{lm}(\phi, \theta))$$

+ $e^{2\Lambda(r)}(1 - H_0(r)e^{i\omega t}Y_{lm}(\phi, \theta))$
- $2i\omega r^{l+1}H_1(r)e^{i\omega t}dtdr$
+ $(1 - K(r)e^{i\omega t}Y_{lm}(\phi, \theta))r^2d\Omega$

use g_{00} term to match Newtonian limit at large r, $-\frac{1+g_{00}}{2} = \frac{1}{2}\varepsilon_{ij}x^{i}x^{j} - \frac{M}{r} - \frac{3}{2}\frac{Q_{ij}x^{i}x^{j}}{r^{5}} + \sum_{i=1}^{N} \frac{Q_{ij}x^{i}x^{j}}{r^{5}} + \sum_{i=1}^{N} \frac{Q_{ij}x^{i}x^$

Newtonian potential of deformed star

Regge-Wheeler metric

+
$$\sum C_n r^n (n \neq 2, -1, -3)$$

Attempts to Solve the Tension

Conclusion

- There's 1 to 2 sigma tension between PREX + CREX and the model constrained by nuclei.
- The mild tension helps constrain density dependence of symmetry energy
- CREX indeed provides more information than PREX.
- PREX + CREX is consistent with ab-initio calculation, dipole polarizability, and other experiments regarding symmetry energy.
- Astronomical observation has very limited constraints on EOS below saturation. • Absent of a direct Urca process is supported by PREX + CREX.
- Looking forward to MREX confirming PREX.

Maxwell and Gibbs in Van der Waals Gas

Skyrme Result

Finite nuclei with MFT

Nucleon densities of ^A_ZX:
(1) Guess the initial 4 density profiles.
(2) Solve Klein-Gorden Eq for 4 mesons f
(3) Construct local 4 single-particle pote
(4) Solve Dirac Eq for lowest Z (N) proto
(5) Compute ground state 4 density prof
(6) Repeat (2) To (5) until converge.

fields.
entials.
on (neutron) levels.
files.

	value	σ_i
R^{48Ca}_{ch}	3.48	0.06
$R^{90}_{ch}{}^{Zr}$	4.27	0.08
$R^{^{208}Pb}_{ch}$	5.5	0.1
$\mathrm{BE}^{^{48}Ca}$	8.67	0.17
$\mathrm{BE}^{^{90}Zr}$	8.71	0.17
$\mathrm{BE}^{^{208}Pb}$	7.87	0.15
$F^{48}_{ch}C^a$	0.1581	0.00
$F_{ch}^{^{208}Pb}$	0.409	0.00

Impacts of Crust EOS and Core EOS on NS Properties

Impact on crust-core transition density

- Transition density decrease with symmetry energy slope *L*.
- n_{R}^{3} DB-UNI $0.074^{+0.004}_{-0.003}(\sigma)^{+0.010}_{-0.006}(2\sigma) \text{ fm}^{-3}$.

EOS at crust-core transition

• With current χ EFT interaction, core-crust transition density can be fixed to

Dipole Polarizability

- Common Observable:

Dipole Polarizability

- Photon excitation works below neutron ionization.
- Proton Coulomb excitation at RCNP, Osaka
- $\alpha_D S_V$ is a better observable than α_D

Electric Dipole Polarizability of 48Ca

Born approximation

- Axial weak potential, $A(r) = \frac{G_F}{2^{3/2}} \rho_W(r)$
- Scattering amplitude: $\int \langle \psi_{in} | A(r) | \psi_{out} \rangle d^{3}r = \frac{G_{F}}{2^{3/2}} \int e^{i\mathbf{q}\cdot\mathbf{1}}$ • $A_{PV} = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}} \approx \frac{G_{F}q^{2} |Q_{W}|}{4\sqrt{2}\pi\alpha Z} \frac{F_{W}(q)}{F_{E}(q)}$ where $F(q) = \frac{\int j_{0}(qr)\rho(r)d^{3}r}{\int \rho(r)d^{3}r}$, and $j_{0}(qr)\rho(r)d^{3}r$

$${}^{\mathbf{r}}\rho_{W}(\mathbf{r})d^{3}r = \frac{G_{F}Q_{W}}{2^{3/2}q^{2}}F_{W}(q)$$

$$\propto \frac{(F_{E} + F_{W})^{2} - (F_{E} - F_{W})^{2}}{(F_{E} + F_{W})^{2} + (F_{E} - F_{W})^{2}}$$

$$(qr) = \frac{\sin(qr)}{qr}$$
 is spherical Bessel function

Weak Charge of Nuclei

- Weak charge: $Q_W = 2T_3 4Q_E \sin^2(\Theta_W)$ where weak isospin $T_3 = -\frac{1}{2}$ for e^{-} , $u^{+\frac{2}{3}}$, n, Neutron weak charge: $Q_n = -1$ (-0.9878 with radiative correction) Proton weak charge $Q_p = 1 - 4 \sin^2(\Theta_W)$ (0.0721 with radiative correction)
- Neutron form factor: $G_n^W = Q_n G_p^E + Q_p G_n^E + Q_p G_n^E$ Proton form factor: $G_p^W = Q_p G_p^E + Q_n G_n^E +$
- Weak charge distribution: $\rho_W(r) = \int d^3r' \left[G_n^V\right]$
- Electric charge distribution: $\rho_E(r) = \int d^3r' \left[e^{-\frac{1}{2}r'} \right] d^3$ Additional complicity: many-body correction, center-of-mass correction, the magnetic contribution from spin-orbital current(SHF) or tensor density (RMF)

, and
$$T_3 = \frac{1}{2}$$
 for $\nu, d^{-\frac{1}{3}}, p^+$

$$+ Q_n G_s^E$$
$$+ Q_n G_s^E$$

$$G_{n}^{W}(r-r')\rho_{n}(r) + G_{p}^{W}(r-r')\rho_{p}(r)$$

$$G_n^E(r-r')\rho_n(r) + G_p^E(r-r')\rho_p(r)$$

	Scalar	Vector		tinc		modol
Isoscalar	σ	$\gamma' \omega_{\mu}$	$\mathbf{U}\mathbf{U}^{-}$	ιγμς		ΙΙΟϤΟΙ
Isovector	$\vec{\tau} \vec{\delta}$	$\gamma^{\mu} \tau \rho_{\mu}$				
					-	- Prior - $S_v = 30.4 \pm \frac{10.5}{7.72}$
$\mathscr{L} = \mathscr{L}_{0}$	$ + \frac{\bar{\psi}(g_{\sigma}\sigma)}{+\frac{\zeta}{4!}(g_{\omega}^{2}\alpha)} $	$-g_{\omega}\gamma^{\mu}\omega_{\mu}-$	$\frac{g_{\rho}}{2}\gamma^{\mu}\tau\rho_{\mu}\psi - \frac{g_{\rho}^{2}\rho^{\mu}\rho_{\mu}}{g_{\rho}^{2}\rho^{\mu}\rho_{\mu}}(g_{\omega}^{2}\rho_{\mu}\rho_{\mu})$	$-\frac{\kappa}{3!}(g_{\sigma}\sigma)^{3}-\omega^{\mu}\omega_{\mu})$	$-\frac{\lambda}{4!}(g_{\sigma}\sigma)^{4} 20$	$30 40 5_V (MeV) L = 63.7^{+29.8}_{-28.1} M$
NL3	FSU	FSU2	=		prior 0	50 100
508.194	491.5	497.479		m_{σ} (MeV)	[450, 550]	L (MeV)
782.501	782.5	782.5		$m_\omega~({ m MeV})$	782.5	ŤΛ
763	763	763		$m_ ho~({ m MeV})$	763	
104.387	$1 \mid 112.199$	6 108.0943		$n_s ~({ m MeV})$	[0.14, 0.165]	
165.585	$4 \mid 204.546$	9 183.7893		BE (MeV)	[-15.5, -16.5]	
79.6	138.470	$1 \mid 80.4656$		M^* (MeV)	[0.5, 0.8] imes 939	
3.8599	1.4203	3.0029		K (MeV)	[210, 250]	
-0.01590	$05 \mid 0.02376$	2 -0.000533		$S_V ({ m MeV})$	[20,50]	
0	0.06	0.0256		L (MeV)	$[L_{min}, L(\Lambda = 0)]$	
0	0.03	0.000823		ζ_ω	[0, 0.03]	
			=	36		

	Isoscalar	Scalar Ve σ	ector $\gamma^{\mu}\omega_{\mu}$	SU.	-type	PRMF	model
	sovector	$\vec{\tau} \vec{\delta} \gamma$	$\mu \vec{\tau} \vec{\rho}_{\mu}$				• Prior • $S_v = 30.4^{+16.3}_{-7.72}$
	$\mathscr{L} = \mathscr{L}_0 -$	$+ \bar{\psi} \left(g_{\sigma} \sigma - \frac{\zeta}{4!} (g_{\omega}^2 \omega^{\mu} \phi_{\sigma}^2) \right)$	$g_{\omega}\gamma^{\mu}\omega_{\mu}-\omega_{\mu}^{\mu}\omega_{\mu}^{\mu}$	$\frac{g_{\rho}}{2}\gamma^{\mu}\tau\rho_{\mu}\psi$	$-\frac{\kappa}{3!}(g_{\sigma}\sigma)^{3}-\frac{2}{\omega}\omega^{\mu}\omega_{\mu})$	$-\frac{\lambda}{4!}(g_{\sigma}\sigma)^{4} 20^{4}$	$30 40 5_V (MeV)$
	NL3	FSU	FSU2			prior 0	50 100
m_{σ} m_{ω}	508.194 782.501	491.5 782.5	$497.479 \\782.5$	_	$m_{\sigma} { m (MeV)} \ m_{\omega} { m (MeV)}$	[450,550]782.5	L (MeV)
m_{ρ}	763	763	763		$m_{\rho} (MeV)$	763 [0.14.0.165]	Λ
g_{σ}^2	104.3871 165.5854	112.1996 204.5469	108.0943 183.7893		BE (MeV)	[-15.5, -16.5]	
$g^2_{ ho}$	79.6	138.4701	80.4656		M^* (MeV)	[0.5, 0.8] imes 939	
κ	3.8599	1.4203	3.0029		K (MeV)	[210,250]	
λ	-0.015905	0.023762	-0.000533		S_V (MeV) L (MeV)	[20,50] [L $L(\Lambda = 0)$]	
ζ		0.06	0.0256			$[L_{min}, L(\Lambda = 0)]$ [0 0 03]	
Λ	0	0.03	0.000823		ς ω 	[0,0.00]	L_{min}

Weak Charge Distribution **Extremely hard!!!**

<u>Jefferson Lab</u> Krishna Kumar 2018 <u>Tao Ye 2021</u> Robert Radloff 2022

Flowchart of PREX and CREX

		CREX	PREX
S	(N,Z)	(28,20)	(126,82)
X	q (fm-1)	0.8733	0.3977
Ĺ	Fch, Rch(fm)	0.1581, 3.481	0.409, 5.50
Measured	Apv	2668±106(stat) ±40(syst)	550±16(sta ±8(syst)
Coulomb Distortion	Fw	0.1304±0.0052(stat) ±0.002(syst)	0.368±0.013(±0.001(the
	Fch-Fw	0.0277±0.0052(stat) ±0.002(syst)	0.041±0.013(±0.001(the
MFT model uncertainty	Rw	3.64±0.026(exp) ±0.023(theo)	5.8±0.075(t
	Rw-Rch	0.159±0.026(exp) ±0.023(theo)	0.297±0.075
	Rn-Rp	0.121±0.026(exp) ±0.024(theo)	0.283±0.071
		CREX 2022	PREX I 2012 PREX

Compared with Astro

• Likelihood in uniform L

$$P(\mathcal{M} \mid \mathcal{O}_{M_{max}}) = \exp\left[-\frac{(M_{max} - M_{max}^{\mathcal{O}})^2}{2\sigma_{M_{max}}}\right]$$
$$P(\mathcal{M} \mid \mathcal{O}) = \int dM \exp\left[-\frac{(\beta_{\mathcal{O}} - \beta(M \mid \mathcal{M}))^2}{2\sigma_{\beta_{\mathcal{O}}}^2} - \frac{(M_{\mathcal{O}} - M)^2}{2\sigma_{M_{\mathcal{O}}}^2}\right]$$

$$P(\mathcal{M} \mid \mathcal{O}_{GW170817}) = \Theta(\Lambda_{1.4}^{\mathcal{O}} - \Lambda_{1.4})$$

CREX+PREX • • L < 57.28 MeV (90%)CREX • L < 49.36 MeV (90%)PREX • L > 48.15 MeV (90%) $\Lambda_{1.4} < 720$ • L < 114.8 MeV (90%) $\Lambda_{1.4} < 580$ • L < 100.6 MeV (90%)Nicer J0030 • L < 148.5 MeV (90%) M_{max} • L > 23.72 MeV (90%)

 $p + e \rightarrow n + \nu$ $\bar{\nu} + p + e \leftarrow n$

- Modified Urca process with superfluidity explains most cooling data.

 $p_F^e + p_F^p > p_F^n$ $n_p/n_n \gtrsim 0.14$

• PREX+CREX is consistent with the absence of evidence for the direct Urca process.

Conclusion

- There's 1 to 2 sigma tension between PREX + CREX and the model constrained by nuclei.
- The mild tension helps constrain density dependence of symmetry energy
- CREX indeed provides more information than PREX.
- PREX + CREX is consistent with ab-initio calculation, dipole polarizability, and other experiments regarding symmetry energy.
- Astronomical observation has very limited constraints on EOS below saturation. • Absent of a direct Urca process is supported by PREX + CREX.
- Looking forward to MREX confirming PREX.

QED and Weak interaction

- Lagrange involving electron: $\mathscr{L} = \mathbf{i}\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi + eJ^{\mu}A_{\mu} + \frac{g_{W}}{\cos(\Theta_{W})}J_{Z}^{\mu}Z_{\mu} - \frac{M_{Z}^{2}}{2}Z^{\mu}Z_{\mu} + \dots$ $J^{\mu} = (\rho_E, \mathbf{j}) = \bar{\psi}\gamma^{\mu}\psi \text{ is electron 4-current,}$ and $J_Z^{\mu} = -\frac{1}{2}\bar{\psi}_L\gamma^{\mu}\psi_L - \sin^2(\Theta)\bar{\psi}\gamma^{\mu}\psi = -\frac{1}{4}\bar{\psi}\left[1 - 4\sin^2(\Theta_W) - \gamma^5\right]\psi$ Weak mixing angle: $\cos(\Theta_W) = \frac{M_W}{M_Z} = 0.882$ $M_W = 80.4 \text{ GeV}, M_Z = 91.2 \text{ GeV}, \sin^2(\Theta_W) = 0.223$ • Z boson propagator: $\frac{g_{\mu\nu}}{M_{\pi}^2 - q^2}$
- 4-Fermi effective interaction at zero momentum : $G_F = \frac{\sigma_W}{4\sqrt{2}M_W^2}$

Maxwell Equations of E.M. and Weak fields

• Lagrange involving photon and <u>Z</u> boson:

$$\mathscr{L} = \left[-\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + eJ^{\mu} A_{\mu} \right] + \left[-\frac{1}{4} Z^{\mu\nu} Z^{\mu\nu$$

where $F_{\mu\nu} = \partial^{\mu}A_{\nu} - \partial^{\nu}A_{\mu}$, $Z_{\mu\nu} = \partial^{\mu}Z_{\nu} - \partial^{\nu}Z_{\mu}$ $A_{\mu} = (\Phi, \mathbf{A}), Z_{\mu} = (\Phi_Z, \mathbf{Z})$ are gauge boson fields, and $J^{\mu} = (\rho_E, \mathbf{j}) = \bar{\psi}\gamma^{\mu}\psi$ is E.M. 4-current of an electron.

• E.M. field follows Maxwell Equations: $\nabla^2 \Phi$

Static electric potential: $\Phi(r) = \int \frac{\rho_E(r')}{4\pi |r - r'|}$ Static Z-boson potential: $\Phi_Z(r) = \int \frac{\rho_Z(r')}{4\pi |r - r'|}$ 4π

<u>Weak interaction is approximately zero-range, since $M_7 \approx 500$ fm⁻¹</u>

 $Z_{\mu\nu} + \frac{g_W}{\cos(\Theta_W)} J_Z^{\mu} Z_{\mu} - \frac{1}{2} M_Z^2 Z^{\mu} Z_{\mu}$

$$\Phi - \frac{\partial^2 \Phi}{\partial_t^2} = \rho_E + (M^2 \Phi \text{ for massive Z boson})$$

$$\frac{dr'^3}{dr'^3} = \frac{dr'^3}{dr'^3} = \frac{dr'^3}{dr'^3} \approx \rho_Z(r') \int \frac{e^{-M_Z |r-r'|}}{4\pi |r-r'|} dr'^3 = \frac{\rho_Z(r')}{M_Z^2}$$

Dirac equation in E.M. and weak field **V-A theory**

• Lagrange involving electron: $\mathscr{L} = \mathbf{i}\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi + eJ^{\mu}A_{\mu} + \frac{g_{W}}{\cos(\Theta_{W})}$ • Electron weak 4-current: $J_{Z}^{\mu} = -\frac{1}{2}\bar{\psi}_{L}\gamma^{\mu}\psi_{L} + \sin^{2}(\Theta)\bar{\psi}\gamma^{\mu}\psi = -\frac{1}{4}\bar{\psi}$ • Dirac equation: $\left[\alpha \mathbf{p} + \beta m + \hat{V}(r)\right] \Psi = E \mathbf{k}$

where
$$\hat{V}(r) = V(r) + \gamma_5 A(r)$$
, $V(r) = \int d^3 \mathbf{r}' \frac{\rho_p(\mathbf{r})}{|\mathbf{r}' - \mathbf{r}|}$, $A(r) = \frac{G_F}{2^{3/2}} \rho_W(r)$

$$\frac{-J_{Z}^{\mu}Z_{\mu}}{N} - \frac{M_{Z}^{2}}{2}Z^{\mu}Z_{\mu} + \dots$$

$$\bar{\psi}\gamma^{\mu} \left[1 - 4\sin^2(\Theta_W) - \gamma^5\right]\psi \approx \frac{1}{4}\bar{\psi}\gamma^{\mu}\gamma^5\psi$$

• In the massless limit (Weyl basis): $\left| \alpha \mathbf{p} + V_{L,R}(r) \right| \Psi_{L,R} = E \psi_{L,R}$, where $V_{L,R}(r) = V(r) \pm A(r)$

Parity violating asymmetry A_{PV} The observable in PREX and CREX

• Parity violating asymmetry: $A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$ where σ_R , σ_L are cross-section of the scattering problem: $\begin{bmatrix} \alpha \mathbf{p} + V_{L,R}(r) \end{bmatrix} \Psi_{L,R} = E \psi_{L,R}, \text{ where } V_L$ $V(r) = \int d^3 \mathbf{r}' \frac{\rho_p(\mathbf{r})}{|\mathbf{r}' - \mathbf{r}|}, \quad A(r) = \frac{G_F}{2^{3/2}} \rho_V$ which is called "Coulomb distortion" in this context:

$$L_{L,R}(r) = V(r) \pm A(r),$$

$$P_W(r)$$

Coulomb distortion stands for repeated electromagnetic interactions with the nucleus remaining in its ground state. This is of order $Z\alpha/\pi$, 20 % for 208Pb.

Form Factor

$$-\int_{Mott} = \frac{Z^2 e^4 (1 - \beta^2 \sin^2 \frac{\theta}{2})}{64\pi^2 \varepsilon_0^2 p^2 \beta^2 \sin^2 \frac{\theta}{2}}$$
$$2\int \frac{\rho(r') d^3 r'}{|r - r'|}$$

$$\frac{1}{2}(\mathbf{q}\cdot\mathbf{r})^2 + \dots \right)\rho(\mathbf{r})d^3r$$

Born approximation

- Axial weak potential, $A(r) = \frac{G_F}{2^{3/2}} \rho_W(r)$
- Scattering amplitude: $\int \langle \psi_{in} | A(r) | \psi_{out} \rangle d^{3}r = \frac{G_{F}}{2^{3/2}} \int e^{i\mathbf{q}\cdot\mathbf{1}}$ • $A_{PV} = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}} \approx \frac{G_{F}q^{2} |Q_{W}|}{4\sqrt{2}\pi\alpha Z} \frac{F_{W}(q)}{F_{E}(q)}$ where $F(q) = \frac{\int j_{0}(qr)\rho(r)d^{3}r}{\int \rho(r)d^{3}r}$, and $j_{0}(qr)\rho(r)d^{3}r$

$${}^{\mathbf{r}}\rho_{W}(\mathbf{r})d^{3}r = \frac{G_{F}Q_{W}}{2^{3/2}q^{2}}F_{W}(q)$$

$$\propto \frac{(F_{E} + F_{W})^{2} - (F_{E} - F_{W})^{2}}{(F_{E} + F_{W})^{2} + (F_{E} - F_{W})^{2}}$$

$$(qr) = \frac{\sin(qr)}{qr}$$
 is spherical Bessel function

Weak Charge of Nuclei

- Weak charge: $Q_W = 2T_3 4Q_E \sin^2(\Theta_W)$ where weak isospin $T_3 = -\frac{1}{2}$ for electron, up quark and neutron, $\frac{1}{2}$ for neutrino, down quark and proton
- Neutron weak charge: $Q_n = -1$ (-0.9878 with radiative correction) Proton weak charge $Q_p = 1 - 4 \sin^2(\Theta_W)$ (0.0721 with radiative correction)
- Neutron form factor: $G_n^W = Q_n G_p^E + Q_p G_n^E + Q_n$ Proton form factor: $G_p^W = Q_p G_p^E + Q_n G_n^E + Q_n G_n^E$
- Weak charge distribution: $\rho_W(r) = \int d^3r' \left[G_n^W(r) \right]$
- Electric charge distribution: $\rho_E(r) = \int d^3r' \left[G_n^E(r) G$
- spin-orbital current(SHF) or tensor density (RMF)

$$\int_{a}^{n} G_{s}^{E} G_{s}^{E}$$

$$(r - r')\rho_{n}(r) + G_{p}^{W}(r - r')\rho_{p}(r)$$

$$(r - r')\rho_{n}(r) + G_{p}^{E}(r - r')\rho_{p}(r)$$

• Additional complicity: many-body correction, center-of-mass correction, the magnetic contribution from

 $m_{v,0}^*$ (h), ρ_0 (i), and W_0 (j).

Finite nuclei with MFT

- guess a set of initial density/current profiles $\{\rho(\mathbf{x})\}$ (this notation denotes the baryon and isospin densities, plus any other spin or scalar densities); most can be set to zero or initialized with a Fermi shape with appropriate parameters;
- evaluate a functional of the $\{\rho(\mathbf{x})\}$, yielding a *local* single-particle potential $V_{s}(\mathbf{x})$;
- solve the Dirac or Schrödinger equation for the lowest A eigenvalues and eigenfunc-(3)tions $\{\epsilon_{\alpha}, \psi_{\alpha}\}$:

$$\left[-i\boldsymbol{\alpha}\cdot\boldsymbol{\nabla}+\beta\boldsymbol{M}+\beta\boldsymbol{V}_{s}(\mathbf{x})\right]\psi_{\alpha}(\mathbf{x})=\epsilon_{\alpha}\psi_{\alpha}(\mathbf{x}),$$

or

$$\left[-\frac{\nabla^2}{2M} + V_{\rm s}(\mathbf{x})\right]\psi_{\alpha}(\mathbf{x}) = \epsilon_{\alpha}\psi_{\alpha}(\mathbf{x});$$

compute new densities, e.g., (4)

$$\rho(\mathbf{x}) = \sum_{\alpha=1}^{A} |\psi_{\alpha}(\mathbf{x})|^{2},$$

and other observables (which are functionals of $\{\epsilon_{\alpha}, \psi_{\alpha}\}$); repeat steps (2)–(4) until the changes from iteration to iteration are acceptably small, (5)i.e., until the solution is self-consistent.

$$\begin{split} \sigma_0'' &= m_{\sigma}^2 \sigma_0 - g_{\sigma} n_s + \frac{\kappa}{2} g_{\sigma}^3 \sigma_0^2 + \frac{\lambda}{6} g_{\sigma}^4 \sigma_0^3 - g_{\rho}^2 \rho_0^2 \\ \omega_0'' &= m_{\omega}^2 \omega_0 - g_{\omega} n + \frac{\zeta}{6} g_{\omega}^4 \omega_0^3 + g_{\rho}^2 \rho_0^2 \frac{\partial f}{\partial \omega_0} , \\ \rho_0'' &= m_{\rho}^2 \rho_0 - \frac{1}{2} g_{\rho} \alpha + 2g_{\rho}^2 \rho_0 f + \frac{\zeta}{6} g_{\rho}^4 \rho_0^3 , \\ 0 &= (i \not{\!\!\!/} - g_{\omega} \omega_0 \gamma_0 + \frac{1}{2} g_{\rho} \rho_0 \gamma_0 - M + g_{\sigma} \sigma_0) \psi_n \\ 0 &= (i \not{\!\!\!/} - g_{\omega} \omega_0 \gamma_0 - \frac{1}{2} g_{\rho} \rho_0 \gamma_0 - M + g_{\sigma} \sigma_0) \psi_p \end{split}$$

$$\mathscr{L}_{0} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi + \frac{1}{2}\left(\partial^{\mu}\sigma\partial_{\mu}\sigma - m_{\sigma}^{2}\sigma^{2}\right) + \frac{1}{2}\left(\partial^{\mu}\sigma\partial_{\mu}\sigma - m_{\sigma}^$$

$$\mathscr{L} = \mathscr{L}_0 + \bar{\psi} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma \sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} (g_\sigma) \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi - \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \gamma^\mu \tau \rho_\mu \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \varphi \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \varphi \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{g_\rho}{2} \varphi \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{\kappa}{3!} \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{\kappa}{3!} \Big) \psi + \frac{\kappa}{3!} \Big) \psi + \frac{\kappa}{3!} \Big(g_\sigma \sigma - g_\omega \gamma^\mu \omega_\mu - \frac{\kappa}{3!} \Big) \psi + \frac{\kappa}{3!} \Big) \psi +$$

		NL3	\mathbf{FSU}	FSU2
	m_{σ}	508.194	491.5	497.479
	m_ω	782.501	782.5	782.5
	$m_{ ho}$	763	763	763
Scalar isoscalar	g_{σ}^{2}	104.3871	112.1996	108.0943
Vector isoscalar	g_{ω}^2	165.5854	204.5469	183.7893
Vector isovector	$g_{ ho}^2$	79.6	138.4701	80.4656
	κ	3.8599	1.4203	3.0029
	λ	-0.015905	0.023762	-0.000533
	ζ	0	0.06	0.0256
	Λ	0	0.03	0.000823
				55

FSU-type RMF model

 $\frac{1}{2}m_{\omega}^{2}\omega^{\mu}\omega_{\mu}-\frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu}+\frac{1}{2}m_{\rho}^{2}\rho^{\mu}\rho_{\mu}-\frac{1}{4}\rho^{\mu\nu}\rho\mu\nu$

 $g_{\sigma}\sigma)^{3} - \frac{\lambda}{4!}(g_{\sigma}\sigma)^{4} + \frac{\zeta}{4!}(g_{\omega}^{2}\omega^{\mu}\omega_{\mu})^{2} + \Lambda_{\omega\rho}(g_{\rho}^{2}\rho^{\mu}\rho_{\mu})(g_{\omega}^{2}\omega^{\mu}\omega_{\mu})$

Back up slides NS Oscillations

Oscillation modes $A(r)e^{i\omega t} \quad \omega = 2\pi\nu + \frac{\mathbf{i}}{\tau}$

Pressure supported

 $\omega^2 \approx$

$$\omega^2 = \frac{1}{\varepsilon_+/tz}$$

Buoyancy oscillation in uniform gravity g:

$$\omega^2 \approx \mathcal{N}^2 = -\frac{g}{\varepsilon} \left(\frac{\partial \varepsilon}{\partial x}\right)_p \frac{dx}{dr} = g^2 \left(\frac{1}{c_{eq}^2} - \frac{1}{c_{ad}^2}\right) \quad x = \left\{\frac{n_p}{n_B}, \frac{n_p}{n_B}, T, \dots\right\}$$

Chemical g-mode (gravity with composition gradient)

Gravity & x gradient

Standing sound wave of order n:

$$\frac{dp}{d\varepsilon}k^2 \quad k = \frac{\sqrt{l(l+1)n}}{2\pi R}$$

n=0 f-mode (fundamental) n=1 p-mode (pressure)

Stratified fluid in uniform gravity g: $(\varepsilon_{+} - \varepsilon_{-})gk$

 $anh(kd_{+}) + \varepsilon_{-}/tanh(kd_{-})$

Gravity & interface

continuity g-mode (interface gravity mode)

f-mode universal relations

 $\Omega_f = GM\omega_f/c^3$ ($\propto \beta^{3/2}$ in Newtonian)

- **1.** $\Omega_f \Lambda$ is slightly weaker than $\Omega_f \overline{I}$
- **2.** Ω_f is close related to compactness β
- $\Omega_f = (0.887 \pm 0.061) \ \beta^{3/2}$ Quark star
- $\Omega_f = (0.714 \pm 0.056) \beta^{5/4}$ Hadronic & hybrid NS

Zhao & Lattimer 2022

p-modes with SHF and RMF EOSs

- $\nu_{1\,4}^{p_1}$ is sensitive to EOS
- $f_{1.4}$ and $\tau_{1.4}^{f}$ are sensitive to

First order transition

BACK

Compositional g-mode universal relation

Gravitational radiation of **NS** oscillation

• The amplitude of observed oscillations is

$$h(t) = h_0 e^{-t/\tau} \cos \omega t$$

• The observed GW energy flux is

$$F(t) = \frac{c^3 \omega^2 h_0^2}{16\pi G} e^{-2t/\tau} = 3.17 e^{-2t/\tau} \left(\frac{\nu}{\mathbf{kHz}}\right)^2 \left(\frac{h_0}{10^{-22}}\right)^2 \text{ ergs cm}^{-2} \text{s}^{-1}$$

• The total GW energy is

$$E = \frac{c^3 \omega^2 h_0^2 \tau D^2}{8G} = 4.27 \times 10^{49} \left(\frac{\nu}{\text{kHz}}\right)^2 \left(\frac{h_0}{10^{-23}}\right)^2 \left(\frac{\tau}{0.1 \text{ s}}\right) \left(\frac{D}{15 \text{ Mpc}}\right)^2 \text{ ergs}$$
supernovae remnant: 10^44-10^47 ergs $D < 20 \text{ kpc}$ $D < 200 \text{ kpc}$
merger remnant: 10^51-10^52 ergs $D \leq 20 - 45 \text{ Mpc}$ $D \leq 200 - 450 \text{ Mpc}$
aLIGO $3G$

$$A(r)e^{i\omega t} \quad \omega = 2\pi\nu + \frac{\mathbf{i}}{\tau}$$

Observation of Oscillations of NS

• Direct observation:

I. BNS merger remnant 2. Core-collapse SNe 3. Star quake (glitches) 4. NS close encounter
spacetime variation

- Indirect observation:
 - Binary NS inspiring

Orbital angular momentum transfer

- gravitational wave form information
- Instrument: Comic explore (US) Einstein Telescope (Europe)

Oscillations of NS in simulation Core-collapse SNe

Radice+2019

Isolated oscillation VS merger remnant

- Strong correlation with the isolated NS f-mode frequency and the peak frequency in post merger.
- case of equal-mass mergers, the peak frequency in supramassive NSs is almost equal to that of the nonrotating f-mode frequency of isolated NSs with the same mass as each of the merging components

Dynamical tidal effect of GW170817

1.43 kHz ~ 2.90 kHz for the more massive star 1.48 kHz ~ 3.18 kHz for the less massive star

90% credible interval of f-mode frequency for GW170817:

Oscillations of NS $\omega = 2\pi\nu + -$ Radial oscillation (I=0): $\epsilon^{r} = R_n^r(r)e^{i\omega t}$ ${\mathcal T}$

don't couple to gravitational waves

Non-radial oscillation (I > = 2) $\varepsilon^{r,\theta} \Phi = \partial_{r,\theta,\phi} \left(R_n^{r,\theta,\phi}(r) Y_m^l(\theta,q) \right)$ f-mode (fundamental n=0) (p-modes (pressure n=1,2,... g-modes (gravity n=1,2,...) r-modes (rotation m=+-1,+-

• Spacetime perturbations: Family I w-modes (even) Family II w-modes (odd) important for BBH ring-down (

Fluid perturbations

		${\cal U}$ (k	Hz)	${\cal T}$ (s)
):	f-mode	e 1.3	-2.8	0.1-1
$(\phi)e^{\mathbf{i}\omega t}$	g-mode	e <0).8	>100
(even),	p-mode	e >2	2.7	1-1000
) (even)	r-mode) ~ S	pin	<0
(even)	w-mod	e ~'	10	~1E-5
-2,) (odd)	$(H_0 e^{\nu})$	$H_1 = 0$	0	
even-parity h _j (polar mode)	$_{\mu\nu}^{even} = \begin{bmatrix} H_{1} \\ H_{1} \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{cccc} H_{1} & 0 \\ H_{2} & 0 \\ 0 & r^{2}K \\ 0 & 0 \end{array} $	0 0 $r^{2}\sin^{2} \epsilon$	$P_l(\cos\theta)$
odd-party (axial modes)	$h_{\mu\nu}^{odd} = \begin{pmatrix} I \\ I \\ I \end{pmatrix}$	$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ H_0' & H_1' & 0 \end{array}$	$ \begin{array}{c} H_0' \\ H_1' \\ 0 \\ 0 \end{array} $ sin	$\theta \partial_{\theta} P_l(\cos \theta)$

ODEs of Non-radial Adiabatic Oscillation

Eigen value problem of even quasi-normal modes

• Linearized Full GR: Thorne, Kip S. 1967 2 1st ODEs + 1 2nd ODEs (inside) 1 2nd ODEs (outside) Zerilli's Eq Fackerell, Edward D. 1971

Lee Lindblom and Steven L. Detweiler 1983

Take **Newtonia**n limit for static gravity and perturbation

Cox, John P. 1980 Newtonian: 2 1st ODEs + 1 2nd ODE Analytical for some modes, e.g. f-mode and interface g-mode

(fluid)

Drop spacetime perturbation

Zhao, Constantinou, Jaikumar, Prakash 2022 https://arxiv.org/abs/2202.01403

(Inverse Cowling)

(Inverse Cowling)

- Relativistic Cowling approximation: 2 1st-order ODEs or 1 2nd-order ODE
 - P. N. McDermott et. al. 1983

Take Newtonian limit for static gravity

Drop gravity perturbation

Newtonian Cowling approximation: 2 ODEs

Cowling, Thomas G 1941

Cowling Approximation in Compositional g-modes

• Dimensionless frequency: $\Omega_f = GM\omega_f/c^3$ ($\propto \beta^{3/2}$ in Newtonian)

r(km) Newtonian: up to 15% deviation

EOS	$\ell=2$	$\ell=3$	$\ell = 4$
Inc	4/5	12/7	8/3
T VII	4/3	204/77	152/39
Buch	$3\pi^2(5\pi^2-30)^{-1}$	2.94766	4.24121

 Table: Newtonian

 $\Omega_f / \beta^{3/2}$

Zhao & Lattimer 2022 https://arxiv.org/abs/2204.03037

f-mode with Hybrid and Quark EOS

One node branch

- Lowest order pressure mode have zero node which is named as f-mode (fundamental).
- However, in case of hybrid NS lowest order pressure mode sometimes have one node due to strong density discontinuity.
- Stars with radial nodes in V only we refer to as 1-node I.
- hybrid stars have a radial node (zero) in the fluid and metric perturbation amplitudes X, W, H_0, H_1, K (but not V, which, however discontinuously changes sign) at a radius slightly larger than the phase transition radius R_t. We will call this type of behavior 1-node II
One node branch

Typical f-mode oscillation

the perturbation amplitudes are plotted.

FIG. 14. Metric perturbation amplitudes, fluid perturbation amplitudes for non-radial oscillations with $\ell = 2$ with (dashed curves) and without (solid curves) the Cowling approximation, and static metric functions (dotted curves) inside a $1.4M_{\odot}$ NS computed with the Sly4 EOS [85]. H_0 , H_1 and K are in units of $\varepsilon_s = 152.26 \text{ MeV fm}^{-3}$, X is in units of ε_s^2 , and W, V, ν and λ are dimensionless. Only real parts of

Compositional g-mode of hadronic NS

Discontinuity g-mode of hadronic NS

8

— |

2

f-mode vs p-mode oscillations $-H_0/10$ -K/109 ---- $H_1/10$ Cowling Approx. f-mode of $M = 1 M_{\odot}$ 0 3 $-H_0/20$ -K/20-X/50---- $H_1/5$ Cowling Approx. 2 p_1 -mode of $M = 1 M_{\odot}$ 0 8 0 4 r(km)

Slightly weaker for $\,\Omega_{\!f}-\bar{I}\,$, see in the paper

$$\Omega_f = (0.714 \pm 0.056) \ \beta^{5/4}$$

Zhao & Lattimer 2022

Discontinuity g-mode for hybrid NS

Zhao & Lattimer 2022

Discontinuity g-mode semi-universal relation

BACK

Compositional g-mode universal relation

G-mode frequency linearly correlated with lepton fraction and quark fraction at center of NS

Zhao, Constantinou, Jaikumar and Prakash 2022 https://arxiv.org/abs/2202.01403

Back up slides Quarkyonic matter EOS in beta-equilibrium

Quarkyonic Phase

quark matter(McLerran 2008).

https://nica.jinr.ru/physics.php

• Hypothetical phase between hadronic matter and deconfined

Quarkyonic Momentum Space

- Perturbative quarks = quarks deep inside Fermi sphere
- Baryons = triple-pair of quarks near Fermi surface

Quarkyonic Transition

- Outer core: Neutron rich uniform
- Critical point: n_B = n_t
 (1) baryonic shells start to 'saturat
 (2) quarks drip out of nucleons,

$$m_{u} = (2\mu_{tp} - \mu_{tn})/3$$

e.g. $m_{d} = (2\mu_{tn} - \mu_{tp})/3$
$$L = 45 \text{MeV}_{n_{t}} = 0.3 \text{fm}^{-3}$$

 $\Lambda = 1400 \text{MeV}$
 μ
 $m_{u} \approx 250 \text{MeV}$
 $m_{d} \approx 390 \text{MeV}$
 $\kappa_{p} \approx -70$
 $\kappa_{p} \approx -30$
 k_{z}

npeµ,
$$\varepsilon_B = \varepsilon_{kin,n} + \varepsilon_{kin,p} + n_B V(n_p, n_n)$$

te',
$$k_{0(n,p)} \ge 0$$
,
 $k_{0(n,p)} = k_{F(n,p)} \left[1 - \left(\frac{\Lambda}{k_{F(n,p)}}\right)^2 - \frac{\kappa_{n,p}\Lambda}{9k_{F(n,p)}} \right]$

Beta-equilibrium & Global Charge Neutrality

- Total baryon number density
- Total lepton number fraction
- Weak interaction time scale is small. Neutrino is free. $p + e^- \leftrightarrow n + (\nu_e), u + e^- \leftrightarrow d + (\nu_e).$

$$\frac{\partial \varepsilon(n_B, Y_L)}{\partial Y_L} = 0 \Longrightarrow \mu_{e^-} = \mu_{\mu^-} = \mu_n - \mu_p = \mu_d - \mu_u$$

• npude_µ mixture is charge neutral, $n_B Y_L = n_p + \frac{2n_u - n_d}{3}$

Y:
$$n_B = n_p + n_n + \frac{n_u + n_d}{3}$$

n: $Y_L = \frac{n_{e^-} + n_{\mu^-}}{n_B}$

Uniqueness of Quarkyonic EOS

• Quarkyonic EOS is compatible with soft hadronic EOS, and also able to achieve high maximum NS mass.

Quark EOS

 ${\cal E}$

Gibbs transition

Quarkyonic transition

EOS and M-R of 9 Specific Cases *

Direct Urca Process

