Moment-based Neutrino Flavor Transformation in BNS Mergers

Evan Grohs (he/him/his)
North Carolina State University
N3AS Annual Meeting, Berkeley, CA 18 Mar 2023

In Collaboration with:
Julien Froustey, Gail McLaughlin, Jim Kneller (NCSU); Sherwood Richers (UTK); Francois Foucart (UNH); Sean Couch (MSU)

1. Fast Flavor Instability (FFI) Motivation
2. Evolution variables and Quantum Kinetic Equations (QKEs)
3. Previous Oscillation Tests in OD and 1D
4. FFI Tests in 1D and 3D
5. FFI simulation in a BNS merger
6. Summary and plan moving forward

Fast Flavor Instability -- Qualitative

1. Neutrinos and anti-neutrinos carry weak charges
2. As neutrino moves through compact object environment:
a. Neutrinos propagate through field of other neutrinos
b. Self-energy diagrams have (relatively) large amplitudes $\sim G_{F}$
c. Momentum-preserving neutrino forward scattering (i.e., selfinteractions)
3. Non-linear self-interactions sensitive to asymmetry of neutrinos vs. anti-neutrinos \Longrightarrow lepton number
4. Lepton number crossings (in angle) can give rise to rapid flavor transformation: Fast Flavor Conversion

Neutrino Density Matrices \& QKEs

1. Use "generalized neutrino density matrices" to characterize the neutrino ensemble

$$
\varrho(t, \vec{r}, \vec{p})=\left(\begin{array}{ll}
\varrho_{e e} & \varrho_{e x} \\
\varrho_{e x}^{*} & \varrho_{x x}
\end{array}\right) \quad \bar{\varrho}(t, \vec{r}, \vec{p})=\left(\begin{array}{cc}
\bar{\varrho}_{e e} & \bar{\varrho}_{e x} \\
\bar{\varrho}_{e x}^{*} & \bar{\varrho}_{x x}
\end{array}\right)
$$

2. Only keep single-particle correlation functions - mean field
3. QKEs from Blaschke \& Cirigliano (2016) - among others:

Drift Term

Force-Term
Coherent Term
Collision Term
$\frac{\partial \varrho}{\partial t}+\dot{\vec{x}} \cdot \frac{d \varrho}{d \vec{x}}+\dot{\vec{p}} \cdot \frac{d \varrho}{d \vec{p}}=-i[\stackrel{H}{H}, \varrho]+C$

Code Comparison - Richers et al (2022)

Fast Flavor Instability test problem (Put in ELN)

PIC and other multi-angle codes

Excellent agreement

Different Approach: Neutrino Moments

FLASH uses angular moments

Take moments of generalized density matrices to eliminate angle dimensions $(j, k, l \in\{x, y, z\} ; a, b \in\{e, x\})$:

$$
\begin{align*}
& E_{a b}(t, \vec{x}, p)=\frac{1}{4 \pi} \frac{p^{3}}{(2 \pi)^{3}} \int d \Omega_{p} \varrho_{a b}(t, \vec{x}, \vec{p}) \tag{th}\\
& F_{a b}^{j}(t, \vec{x}, p)=\frac{1}{4 \pi} \frac{p^{3}}{(2 \pi)^{3}} \int d \Omega_{p} \frac{p^{j}}{p} \varrho_{a b}(t, \vec{x}, \vec{p}) \tag{st}\\
& P_{a b}^{j k}(t, \vec{x}, p)=\frac{1}{4 \pi} \frac{p^{3}}{(2 \pi)^{3}} \int d \Omega_{p} \frac{p^{j} p^{k}}{p^{2}} \varrho_{a b}(t, \vec{x}, \vec{p}) \tag{nd}\\
& T_{a b}^{j k l}(t, \vec{x}, p)=\ldots
\end{align*}
$$

Zhang \& Burrows (2013): Equations of motion for first 2 moments

$$
\begin{aligned}
& \frac{\partial E}{\partial t}+\frac{\partial F^{j}}{\partial x^{j}}=-i\left[H_{V}+H_{M}+H_{E}, E\right]+i\left[H_{F_{j}}, F^{j}\right] \\
& \frac{\partial F^{j}}{\partial t}+\frac{\partial P^{j k}}{\partial x^{k}}=-i\left[H_{V}+H_{M}+H_{E}, F^{j}\right]+i\left[H_{F_{k}}, P^{j k}\right]
\end{aligned}
$$

$$
\begin{array}{ll}
H_{V}=-\frac{1}{2 p} U M^{2} U^{\dagger} & H_{E}=4 \pi \sqrt{2} G_{F} \int \frac{d q}{q}(E-\bar{E}) \\
H_{M}=\sqrt{2} G_{F} n_{e} I_{e} & H_{F_{j}}=4 \pi \sqrt{2} G_{F} \int \frac{d q}{q}\left(F_{j}-\bar{F}_{j}\right)
\end{array}
$$

Truncate tower of equations after F^{j} with closure relationship

Closure Relationship - Cartesian Geometry

1. For Cartesian box calculations: closure independent of radius
2. Need flux factors for diagonal and off-diagonal (in each cell)

$$
f_{a b}(q)=f(q)=\frac{|\operatorname{Tr}[\vec{F}]|}{\operatorname{Tr}[E]}
$$

Same for each density matrix component!
3. Eddington factor from flux factor via Maximum Entropy Closure

$$
\chi=\frac{1}{3}+\frac{2}{15} f^{2}\left(3-f+3 f^{2}\right)
$$

4. Calculate Eddington tensor (Pressure)

$$
P_{a b}^{j k}=P_{a b}^{j k}\left(\chi, E_{a b}, \vec{F}_{a b}\right)
$$

No guarantee moments will capture FFI

1. Code for modeling CCSN in multiple dimensions; See Fryxell et al (2000)
2. Advanced M1 neutrino transport, i.e., non-unitary processes; See O'Connor \& Couch (2018) [3 species of v]
3. Initiate 2-flavor oscillation physics and infrastructure M. Warren \& S. Richers [8 species of v]
4. 1D/2D/3D calculations
5. Cartesian or Spherical geometries
6. Force and Collision terms neglected at this point

Bipolar Oscillation Test: Homogeneous

Flux Moment identically zero at all times

Use Vacuum and SelfInteracting terms in QKEs

No analytical prediction for shape of the curves

Plots are for first cell

Dashed black line analytic prediction for period

Vacuum \& MSW Test: Spherical 1D

1. Fiducial: beams/slabs of neutrinos vs. anti-neutrinos at 180 degrees
2. TwoThirds: isotropic neutrinos, beamed anti-neutrinos; anti-neutrino number density $2 / 3$ of neutrino
3. 90Degree: beams of neutrinos vs. anti-neutrinos at right angles

Name	$n_{\nu_{e}}$ $\left(10^{32} \mathrm{~cm}^{-3}\right)$	$n_{\bar{\nu}_{e}}$ $\left(10^{32} \mathrm{~cm}^{-3}\right)$	$\sum n_{\nu_{x}}$ $\left(10^{32} \mathrm{~cm}^{-3}\right)$	$\mathbf{f}_{\nu_{e}}$	$\mathbf{f}_{\bar{\nu}_{e}}$	$\mathbf{f}_{\nu_{x}}$	L $(\mathrm{~cm})$	$N_{g p}$
Fiducial	4.89	4.89	0	$(0,0,1 / 3)$	$(0,0,-1 / 3)$	$(0,0,0)$	8	128^{3}
TwoThirds	4.89	3.26	0	$(0,0,0)$	$(0,0,-1 / 3)$	$(0,0,0)$	32	128^{3}
90Degree	4.89	4.89	0	$(0,0,1 / 3)$	$(0,1 / 3, \quad 0)$	$(0,0,0)$	8	128^{3}

$$
N_{a b}(\vec{x}, p)=\frac{4 \pi}{p} E_{a b}(\vec{x}, p) \quad \mathrm{f}_{a b}=\frac{\vec{F}_{a b}}{E_{a b}}
$$

Compare against EMU

Initial Conditions: Off-Diagonal components 12

Turn off Vacuum term
Seed off-diagonal components at $t=0$ with perturbation $(a \neq b)$

$$
\delta E_{a b}(\vec{x})=10^{-6} \frac{p}{4 \pi} \max \left\{N_{c c}\right\}\left[A_{a b}(\vec{x})+i B_{a b}(\vec{x})\right]
$$

Random numbers $-1<A_{a b}, B_{a b}<1$ in each cell

Weighted fluences correlated with energy density

$$
\delta \vec{F}_{a b}(\vec{x})=\delta E_{a b}(\vec{x}) \frac{\Sigma_{c} N_{c c} \mathbf{f}_{c c}}{\Sigma_{c} N_{c c}}
$$

Geometry of FFI Tests in 3D

Averaged Results: Three Initial Tests

Fast Flavor Instability(FFI) in a Neutron Star Merger

Red Curves: Moment method (FLASH code) Black curves: Particle-in-a-Cell method (EMU code)

Lepton number crossings (in angle) give rise to rapid flavor transformation: Fast Flavor Conversion

Foucart et al (2016): GR simulation with M1 scheme for NSM with Transport \& Maximum Entropy Closure

Success: Moment method captures FFI

$\frac{\text { Phase of }}{\text { Off-Diagonal }}$

$\phi_{e x}=\arctan 2\left[\frac{\operatorname{Im}\left(N_{e x}\right)}{\operatorname{Re}\left(N_{e x}\right)}\right]$

White: $\quad \phi_{e x}=0$

$$
\phi_{e x}=\pi / 2
$$

$>$

$$
\text { Blue: } \quad \phi_{e x}=-\pi / 2
$$

Fourier Transform

Discrete Fourier transform of OffDiagonal over space

Shows which scales have the largest power

Time ~0.1 ns before saturation

Comparisons

Name	$\operatorname{Im}(\Omega)$ $\left(10^{10} \mathrm{~s}^{-1}\right)$	$\|k\|_{\max }$ $\left(\mathrm{cm}^{-1}\right)$
LSA	7.62	5.64
EMU (2f)	5.58	4.79
EMU (3f)	5.47	4.79
FLASH (2f)	8.09	6.39

Growth Rate

Fastest Growing
Mode

Summary \& Plan moving forward

1. Moments/FLASH capture the FFI
2. Closure relationship is and will continue to be crucial (Quantum Closures - Jim Kneller)
3. Need to look at more coherent physics cases in compact objects
4. Need to introduce the QKE collision term
5. Long term: calculate electron fraction(s)
6. Longer term: model CCSNe and BNS mergers with full flavor transformation in the Flash-X code and other GRMHD (N3AS)
