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Fast Flavor Instability -- Qualitative
1. Neutrinos and anti-neutrinos carry weak charges

2. As neutrino moves through compact object environment:

a. Neutrinos propagate through field of other neutrinos

b. Self-energy diagrams have (relatively) large amplitudes ~"!
c. Momentum-preserving neutrino forward scattering (i.e., self-

interactions)

3. Non-linear self-interactions sensitive to asymmetry of neutrinos vs. 

anti-neutrinos ⟹ lepton number

4. Lepton number crossings (in angle) can give rise to rapid flavor 

transformation: Fast Flavor Conversion
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Neutrino Density Matrices & QKEs
1. Use “generalized neutrino density matrices” to characterize the neutrino ensemble

2. Only keep single-particle correlation functions – mean field

3. QKEs from Blaschke & Cirigliano (2016) – among others:
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4Code Comparison – Richers et al (2022)
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The normalization constant A is determined by requiring
that

R
du g(u) = 1. Specifically,
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The parameters we use are listed in Table I. We choose
this ELN distribution because it has already been stud-
ied by multiple groups, allowing this verification e↵ort to
directly impact those works as well.

B. Perturbations

The fast flavor instability amplifies unstable modes
seeded by perturbations in the initial conditions. We
perturb P1 and P2 (or equivalently, ⇢ex) according to

S(t = 0, z) =
amaxX

a=�amax

Bae
i(kaz+�a) (7)

where ka = 2⇡a/L with L being the length of the periodic
box along z. We cut o↵ the spectrum of the perturba-
tions at amax = Nz/20, where Nz is the number grid
cells along z, in order to avoid small-scale structure in
the perturbations that might induce numerical errors in
some methods. This causes the smallest wavelength of
perturbations to be resolved by 20 grid cells. The ampli-
tudes of each sinusoid are arbitrarily chosen to be

Ba=0 = 0 and Ba 6=0 = 10�7
|a|�1 . (8)

We also choose the phase �a to be uniformily random,
sampled independently for each a, and not synchronized
between the di↵erent simulations. The perturbations are
isotropic in that Ba and �a are the same for all u. Follow-
ing perturbations to P1 and P2, P3 is adjusted to preserve
|P| = 1.

C. Simulation Grid

In order to come as close as possible to the calcu-
lations of [40, 50], we adopt a simulation box of size
L = 10240µ�1 spanned by a uniform grid of Nz = 10240
cells. This choice of simulation domain, together with the
above perturbation amplitude and ELN distribution, al-
low the instability to saturate long before neutrinos are
able to wrap around the simulation domain. In addi-
tion, we use 200 polar angular bins (or 201 bins in the
case of NuGas) uniformily-spaced in u. In the Zaizen
code, angular bins are not uniform but set on the roots
of Legendre polynomials. The PIC calculations do not
have angular bins, per se, but instead distribute 400 par-
ticles around the equatorial direction, which results in
approximately 200 polar angles (i.e., 400 particles are
needed to represent the single direction u = 0 in other
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FIG. 1. Domain-integrated survival property (top panel) and
transition probability (bottom panel) as a function of time.
The initial perturbations grow exponentially until the insta-
bility saturates at t ⇡ 1300µ�1. All simulations show the
same instability growth rate, saturation time, saturation am-
plitude, and late-time equilibrium.

methods). We assume homogeneity in the x̂ and ŷ direc-
tions, and impose periodic boundary conditions in the
ẑ direction. We limit the duration of the simulations
to tmax = 5000µ�1 in order to prevent potential conse-
quences of the periodic boundary conditions. This reso-
lution was chosen based on a resolution study using the
NuGas and Cose⌫-FV codes; doubling the spatial reso-
lution caused the polarization vector to be di↵erent by
at most 0.12 (NuGas) or 0.0035 (Cose⌫) anywhere on
the domain at the end of the simulation. The excellent
agreement between methods with di↵erent convergence
properties (and therefore di↵erent amounts of numerical
error) suggests that the results are not significantly in-
fluenced by the resolution.

IV. RESULTS

We first show good agreement in the average amount
of flavor transformation over time. The fraction of neu-
trinos that remain in the electron flavor state (i.e. the
survival probability) can be expressed as

Psurv(t) =

Z 1

�1
g⌫e(u)

hP3(t, u)i + 1

2
du, (9)

Fast Flavor Instability test 
problem (Put in ELN)

PIC and other multi-angle 
codes

Excellent agreement



Different Approach: Neutrino Moments

(0th)

(1st)

(2nd)

FLASH uses angular moments

Take moments of generalized density matrices to eliminate angle dimensions 
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Neutrino QKEs with moments for FFI

Zhang & Burrows (2013): Equations of motion for first 2 moments

Truncate tower of equations after !! with closure relationship
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Closure Relationship – Cartesian Geometry

1. For Cartesian box calculations: closure independent of radius
2. Need flux factors for diagonal and off-diagonal (in each cell)

3. Eddington factor from flux factor via Maximum Entropy Closure

4. Calculate Eddington tensor (Pressure)

Same for each density
matrix component!

P jk
ab = P jk

ab (�, Eab, ~Fab)

� =
1

3
+

2

15
f2(3� f + 3f2)

fab(q) = f(q) =
|Tr[~F ]|
Tr[E]

No guarantee 
moments will 
capture FFI
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FLASH – Multi-D Hydrodynamics Code

1. Code for modeling CCSN in multiple dimensions;
See Fryxell et al (2000)

2. Advanced M1 neutrino transport, i.e., non-unitary processes;
See O’Connor & Couch (2018) [3 species of !]

3. Initiate 2-flavor oscillation physics and infrastructure –
M. Warren & S. Richers [8 species of !]

4. 1D/2D/3D calculations
5. Cartesian or Spherical geometries
6. Force and Collision terms neglected at this point
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Name
n⌫e n⌫e ⌃n⌫x f⌫e f⌫e f⌫x L Ngp

(1032cm�3) (1032cm�3) (1032cm�3) (cm)
Fiducial 4.89 4.89 0 (0, 0, 1/3) (0, 0 ,�1/3) (0, 0, 0) 8 1283

TwoThirds 4.89 3.26 0 (0, 0, 0 ) (0, 0 ,�1/3) (0, 0, 0) 32 1283

90Degree 4.89 4.89 0 (0, 0, 1/3) (0, 1/3, 0 ) (0, 0, 0) 8 1283

Three FFI Tests in 3D

1. Fiducial: beams/slabs of neutrinos vs. anti-neutrinos at 180 degrees

2. TwoThirds: isotropic neutrinos, beamed anti-neutrinos; anti-neutrino 

number density 2/3 of neutrino

3. 90Degree: beams of neutrinos vs. anti-neutrinos at right angles

Nab(~x, p) =
4⇡

p
Eab(~x, p) fab =

~Fab

Eab
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Compare 

against EMU



Initial Conditions: Off-Diagonal components

�Eab(~x) = 10�6 p

4⇡
max{Ncc}[Aab(~x) + iBab(~x)]

Turn off Vacuum term
Seed off-diagonal components at " = 0 with perturbation (& ≠ ()

Random numbers −1 < -!" , /!" < 1 in each cell

� ~Fab(~x) = �Eab(~x)
⌃cNccfcc
⌃cNcc
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Weighted fluences correlated with energy density
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Flavor Equilibration
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Grohs et al (In Prep.)



Fast Flavor Instability(FFI)
in a Neutron Star Merger

Red Curves: Moment method (FLASH code)
Black curves: Particle-in-a-Cell method (EMU code) 0.6
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Lepton number crossings (in angle) give rise to rapid flavor 
transformation: Fast Flavor Conversion

Foucart et al (2016): GR simulation with M1 scheme for 
NSM with Transport & Maximum Entropy Closure

Success: Moment method captures FFI

arXiv: 2207.02214



Phase of
Off-Diagonal
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Red:
Blue:
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Fourier Transform

Discrete Fourier transform of Off-

Diagonal over space

Shows which scales have the 

largest power

Time ~0.1 ns before saturation

Prediction from
Linear Stability Analysis
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Name Im(⌦) |k|max

(10
10
s
�1

) (cm
�1

)

LSA 7.62 5.64

EMU (2f) 5.58 4.79

EMU (3f) 5.47 4.79

FLASH (2f) 8.09 6.39

Comparisons

Growth Rate Fastest Growing
Mode

Prediction

FLASH

EMU
=

1

30
CPU Time Comparison:
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1. Moments/FLASH capture the FFI

2. Closure relationship is and will continue to be crucial

(Quantum Closures – Jim Kneller)

3. Need to look at more coherent physics cases in compact objects

4. Need to introduce the QKE collision term

5. Long term: calculate electron fraction(s)

6. Longer term: model CCSNe and BNS mergers with full flavor 

transformation in the Flash-X code and other GRMHD (N3AS)

Summary & Plan moving forward 19


