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Motivation

GW170817

First detection of the gravitational wave from binary neutron star merger(NSM).

Confirms that NSM can produce heavy nuclei (heavier than Fe)

How this event produces heavy nuclei?

What’s the abundance of those heavy nuclei?



R-Process
R-process: Rapid neutron capture process à heavy nuclei

R-process: 𝜆! ≫ 𝜆"
S-process: 𝜆! ≪ 𝜆"



Observational information is from meteorites and photospheric observations
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Second and Third Peaks at A = 130 and 195
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Observational information is from meteorites and photospheric observations

REP at A = 165

R-Process



Combines nuclear physics inputs and astrophysical conditions 
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Nuclear Input
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Nuclear Input

Nuclear 
masses
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theory calculations



Nuclear Input

Nuclear 
masses

ØA critical input for structure and reaction 
theory calculations

ØAffect nearly all reacIons in r-process
• PhotodissociaIon 
• Neutron capture
• Fission 
• 𝛽-decay
• … …



Nuclear Input



AME2020

Atomic Mass Evaluation
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𝑓 𝑥 = 𝑦
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𝑓 𝑥 = 𝑦

(Z, N, A …)
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𝑓 𝑥 = 𝑦

(Z, N, A …) Mass of the nucleus

AME2020

Atomic Mass Evaluation

Nuclear Input



Mass Model 
Mixture Density Network (MDN)



Mass Model 
Mixture Density Network (MDN)



Our Model:  Training (20 % data) Testing (80 % data)

𝑓 𝑥 = 𝑦

Mass Model 



Minimize:

ℒ% =*
&

𝐺𝐾(𝑍& , 𝑁&)

𝐺𝐾 𝑍,𝑁 : Garvey-Kelson Mass relation:
(Mass relation of its 6 neighbors)

Mass Model 



Our Model:  Training (20 % data) TesYng (80 % data)
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Our Model:  Training (20 % data) Testing (80 % data)

Mass Model 



Our Model:  Training (20 % data) RMS: 138 keV; Testing (80 % data) RMS: 246keV

FRDM: RMS 537 keV
DZ33  : RMS 405 keV
Hfb32: RMS 560 keV

RMS = %
!

"
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑! − 𝐴𝑐𝑡𝑢𝑎𝑙! #

𝑛
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Application to the r-process
Super high temperature ( 109 K)

Super neutron rich environment (1024 cm-3)

Rapid neutron capture process or r-process happens 

(n-capture faster than β! decay)

Astrophysical site for production of heavy nuclei

Figure: NASA
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Applica8on to the r-process
Neutron Separation Energy: 𝑆! 𝑍, 𝐴 = 𝑀 𝑍,𝑁 − 1 +𝑀! −𝑀(𝑍, 𝐴)
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Summary and Future work

Summary

Studied the nuclear mass model using machine learning technique

Applied this mass model to r-process simulation which gives a reasonable abundance pattern

Future work

Improve this mass model by optimizing input features

Understand the deviation between observed and simulated r-process abundance pattern
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Input Feature Space


