Introduction of the GRRMHD code Gmunu and its applications N3AS Annual Meeting 2023

18 Mar 2023

Patrick Chi-Kit Cheong patrick.cheong@berkeley.edu

N3AS postdoc fellow University of New Hampshire

PHYSICS FRONTIER CENTER

Agenda

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction NS astrophysics Gmunu

Applications

Oscillations of magnetised NS Formation of hybric star GW Asteroseismology Magnetic winding Future work Summary

Backup slides

Introduction

NS astrophysics Gmunu

Applications

Oscillations of magnetised NS Formation of hybrid star GW Asteroseismology Magnetic winding

Future work

Summary

Backup slides

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysic Gmunu

Applications

Oscillations of magnetised NS

Rormation of hybrid

GW Asteroseismology Magnetic winding

Future work

Summary

Backup slides

N3AS postdoc fellow UNH

27

Introduction

Introduction

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

NS astrophysics

Neutron stars (NSs)

- \blacktriangleright the most compact with an internal structure
- power many astrophysical sources of high-energy emission
- \blacktriangleright could contain strong \vec{B} field (~ 10^{8-16} G)
- ▶ sometime related to extreme astrophysical events
- extreme physics play important roles

NS modelling

- ► Magnetars
- ► Neutron star mergers
- ► Core-collapse supernovae

Artist concept of a neutron star. Credit: NASA

Equations needed to be solved

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysics Gmunu

Applications

Oscillations of magnetised NS Formation of hybrid star GW Asteroseismology

Magnetic windin

Future work

Summary

Backup slides

$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T_{\mu\nu},$ $\nabla_{\mu} (\rho u^{\mu}) = 0,$ $\nabla_{\mu}T^{\mu\nu} = 0,$ $p = p (\rho, \epsilon, Y_{e} \cdots),$ $\nabla_{\mu}F^{\mu\nu} = \mathcal{J}^{\nu}, \quad \nabla_{\mu}^{*}F^{\mu\nu} = 0,$ $\begin{pmatrix} \mu & \partial & \nabla^{\mu} & \alpha & \beta & \partial \\ & & \nabla^{\mu} & \alpha & \beta & \partial \end{pmatrix} \epsilon \quad (\partial$

.

 $\left(p^{\mu}\frac{\partial}{\partial x^{\mu}} - \Gamma^{\mu}_{\alpha\beta}p^{\alpha}p^{\beta}\frac{\partial}{\partial p^{\mu}}\right)f = \left(\frac{\partial f}{\partial \tau}\right)_{\text{coll}}$

(Einstein equation) (cons. rest mass) (cons. energy/momentum) (equation of state) (Maxwell equations)

(Boltzmann equation)

$$T^{\text{total}}_{\mu\nu} = T^{\text{fluid}}_{\mu\nu} + T^{\text{EM}}_{\mu\nu} + T^{\text{rad}}_{\mu\nu} + \cdots$$

Gmunu: A new code for generic astrophysical simulations

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysic

Applications

Oscillations of magnetised NS Formation of by:

Formation of hybrid star

GW

Magnetia winding

Future work

Summary

Backup slides

Gmunu (General-relativistic **mu**ltigrid **nu**merical solver) ([1, 2, 3, 4])

Physics modules

- ► Consternated-evolution scheme for Einstein equation
 - ► Conformally flat condition (CFC)
- ► GRMHD
 - ▶ ideal/(resistive + dynamo)
 - ▶ hyperbolic cleaning
 - constrained transport
 - elliptic cleaning
- \blacktriangleright Radiative transfer
 - ▶ Two-moment scheme
 - ► grey/multi-group

Numerical features

- Block-based Adaptive Mesh Refinement (AMR) (provided by MPI-AMRVAC)
- Parallelised with MPI (provided by MPI-AMRVAC)
- ▶ Multi-dimensional (1-3D)
- ▶ Curvilinear geometries

Examples

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysics Gmunu

Applications

Oscillations of magnetised NS Formation of hybrid star GW Asteroseismology

Future work

Summary

Backup slides

N3AS postdoc fellow UNH 27 Cylindrical

Spherical

Examples

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysics

Gmunu

Applications

Oscillations of magnetised NS Formation of hybristar

GW

Asteroseismology

Magnetic winding

Future work

Summary

Backup slides

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction NS astrophysics Gmunu

Applications

Oskillations of magnetised NS Formation of hybristar GW Asteroseismology

Magnetic winding

Future work

Summary

Backup slides

N3AS postdoc fellow UNH

27

Applications

Oscillation modes of strongly magnetised neutron stars

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

- Introduction NS astrophysics
- Gmunu

Applications

Oscillations of magnetised NS

- Formation of hybri star
- Asteroseismology
- Magnetic winding
- Future work
- Summary
- Backup slides

- \blacktriangleright Leung+ 2022 (arXiv:2303.05684)
- ▶ 2D, purely toroidal B fields, GRMHD simulations
- \blacktriangleright the stellar oscillations are insensitive to magnetic fields until the magnetic to binding energy ratio goes beyond 10%
- \blacktriangleright $\vec{B}_{\rm tor}$ suppress the compactness of NSs, and thus frequency of the oscillation modes

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysics Gmunu

Applications

Oscillations of magnetised NS

Formation of hybrid 10

GW Asteroseismo

Magnetic winding

Future work

Summary

Backup slides

- \blacktriangleright Yip+ in prep.
- \blacktriangleright polytrope EOS + MIT bag model
- Macroscopic quantities of the hybrid stars are not sensitive to the magnetic field until $\mathcal{B}_{\max}^* \gtrsim 5 \times 10^{17}$ G, where all quantities change significantly.

Gravitational-wave Asteroseismology

▶ Ng+ 2021 ▶ $f_{\max} \approx f_{2f}$

Magnetic winding

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophys Gmunu

Applications

Oscillations of magnetised NS Formation of hybrid star GW

Asteroseismology Magnetic winding

Future work

Future worr

Summary

Backup slides

- ► Carlin Will (N3AS mentorship program)
- \blacktriangleright 2D GRMHD simulations of differential rotating neutron stars
- ▶ Study how the rotation and MHD effects in NS affects the surrounding disk materials

N3AS Annual Meeting	
Patrick Chi-Kit CHEONC	
Introduction NS hetrophysics Gmma Applications Obsellations of magnetized NS Rorination of hybrid- star GW Asterowebianology Asterowebianology	Future work
Future work	
Summary Backup slides	
N3AS postdoc fellow UNH 27	

Radiation transport

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysic Gmunu

Applications

Oscillations of magnetised NS Formation of hybrid star GW

Asteroseismology

magnetic winding

14

Future work

Summary

Backup slides

Radiation transport

- ► Cheong+ 2023 (arXiv: 2303.03261)
- ▶ General relativistic
- \blacktriangleright two-moment based
- ▶ multi-energy
- multi-species, multi-energy radiation-matter couplings
- nuclear/neutrino microphysics inputs are essential

Radiation transport

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophys Gmunu

Applications

Oscillations of magnetised NS

star

Gw Asteroseisn

Magnetic winding

Future work

Summary

Backup slides

N3AS Annual Meeting	
Patrick Chi-Kit CHEONG	
Introduction NS metrophysics Gammu Applications Observations of magnetized NS Rorination of Hydrid- star GW Asterosolismology Magnedes, wilhing	Summary
Future work	
Summary 16 Backup slides	
N3AS postdoc fellow UNH 27	

Summary

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysics Gmunu

Applications

Oscillations of magnetised NS

Formation of hybrid star

GW Asterose

Magnetic winding

17

27

Future work

Summary

Backup slides

► Briefly presented Gmunu

▶ Dynamical spacetime (CFC)

- ► GRMHD
- ▶ radiation transport

▶ Nuclear and neutrino microphysics are essential inputs

▶ Post-merger & CCSN simulations

Thank you for your attention. Q & A

PHYSICS FRONTIER CENTER

References I

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction NS astrophysics

Gmunu

Applications

Oscillations of magnetised NS Formation of hybrid star GW Asteroseismology Magnetic winding

Future work

Summary

Backup slides

 P. C.-K. Cheong, L.-M. Lin, and T. G. F. Li, "Gmunu: toward multigrid based Einstein field equations solver for general-relativistic hydrodynamics simulations," *Classical and Quantum Gravity*, vol. 37, p. 145015, July 2020.

[2] P. C.-K. Cheong, A. T.-L. Lam, H. H.-Y. Ng, and T. G. F. Li, "Gmunu: paralleled, grid-adaptive, general-relativistic magnetohydrodynamics in curvilinear geometries in dynamical space-times," MNRAS, vol. 508, pp. 2279–2301, Dec. 2021.

- [3] P. C.-K. Cheong, D. Y. T. Pong, A. K. L. Yip, and T. G. F. Li, "An Extension of Gmunu: General-relativistic Resistive Magnetohydrodynamics Based on Staggered-meshed Constrained Transport with Elliptic Cleaning," ApJS, vol. 261, p. 22, Aug. 2022.
- [4] P. C.-K. Cheong, H. H.-Y. Ng, A. T.-L. Lam, and T. G. F. Li arXiv e-prints, p. arXiv:2303.03261, Mar. 2023.
- [5] E. B. Abdikamalov, H. Dimmelmeier, L. Rezzolla, and J. C. Miller, "Relativistic simulations of the phase-transition-induced collapse of neutron stars," *MNRAS*, vol. 392, pp. 52–76, Jan. 2009.
- [6] B. Franzon, V. Dexheimer, and S. Schramm, "A self-consistent study of magnetic field effects on hybrid stars," MNRAS, vol. 456, pp. 2937–2945, Mar. 2016.

N3AS Annual Meeting
Patrick Chi-Kit CHEONC
Introduction
NS astrophysics
Gmunu
Applications
Oscillations of magnetised NS
Formation of hybrid star
GW Asteroseismology
Magnethe winding
Future work
Summary
Backup slides 19
Dackup sindes

Backup slides

27

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysic Gmunu

Applications

Oscillations of magnetised NS Formation of hybrid star GW

Asteroseismology

Magnetic winding

Future work

Summary

Backup slides

20

Presenting a recent work by Yip et al. (in prep.)

- ▶ The formation of a hybrid star (phase transition from hadronic to deconfined quark matter) \rightarrow EM/GW signals
- ▶ These signals provide probes for the properties of NS
- \blacktriangleright dynamical study of magnetized hybrid star formation has yet to be realized
- \blacktriangleright We consider MIT bag model + normal hadronic matter in such systems

Hybrid star model

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysic Gmunu

Applications

Oscillations of magnetised NS

Formation of hybrid star

GW

Asteroseismology

Magnetic winding

Future work

Summary

Backup slides

21

The MIT bag model equation of state for massless and non-interacting quarks at zero temperature is given by

$$P_{\rm q} = \frac{1}{3}(e - 4B),\tag{1}$$

where e is the total energy density and B is the bag constant. For the normal hadronic matter, we adopt an ideal gas type of equation of state for the evolution

$$P_{\rm h} = (\gamma - 1)\rho\epsilon \tag{2}$$

Hybrid star model

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

EOS for evolution:

NS astrophysic Gmunu

Applications

Oscillations of magnetised NS

Formation of hybrid star

GW

Asteroseismolog

Magnetic winding

Future work

Summary

Backup slides

$P = \begin{cases} P_{\rm h} & \text{for } \rho < \rho_{\rm hm}, \\ \alpha_{\rm q} P_{\rm q} + (1 - \alpha_{\rm q}) P_{\rm h} & \text{for } \rho_{\rm hm} \le \rho \le \rho_{\rm qm}, \\ P_{\rm q} & \text{for } \rho_{\rm qm} < \rho, \end{cases}$

where

$$\alpha_{\rm q} = 1 - \left(\frac{\rho_{\rm qm} - \rho}{\rho_{\rm qm} - \rho_{\rm hm}}\right)^{\delta} \tag{4}$$

(3)

We choose $\rho_{\rm hm} = 6.97 \times 10^{14} \text{ g cm}^{-3}$, $\rho_{\rm qm} = 24.3 \times 10^{14} \text{ g cm}^{-3}$ and $B^{1/4} = 170$ MeV [5].

Equilibrium model

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysics Gmunu

Applications

Oscillations of magnetised NS Formation of hybrid star GW Asteroseismology Magnetic winding Future work

Summary

Backup slides

23

	M	$ ho_{ m c}$	$r_{\rm e}$	$\mathscr{H} \mid \mathscr{W}$	B_{\max}
	(M_{\odot})	$(10^{14} \text{ g cm}^{-3})$	(km)		$(10^{17} { m G})$
REF	1.55	8.56	11.85	0.00	0.00
T1K1	1.55	8.56	11.85	3.97×10^{-6}	3.45×10^{-2}
T1K2	1.55	8.56	11.85	1.58×10^{-5}	6.89×10^{-2}
T1K3	1.55	8.57	11.85	3.95×10^{-4}	3.44×10^{-1}
T1K4	1.55	8.63	11.92	6.21×10^{-3}	1.36
T1K5	1.56	8.81	12.15	2.35×10^{-2}	2.63
T1K6	1.58	9.10	14.43	0.12	5.52
T1K7	1.59	8.81	16.21	0.17	6.01
T1K8	1.60	8.27	18.64	0.21	6.14
T1K9	1.61	7.53	21.97	0.26	5.96
T1K10	1.62	6.64	26.62	0.30	5.53
T1K11	1.63	5.69	33.19	0.34	4.93

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysics Gmunu

Applications

Oscillations of magnetised NS Formation of hybri star GW

Magnetic winding

Future work

Summary

Backup slides

24

27

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysic Gmunu

Applications

Oscillations of magnetised NS Formation of hyb star

GW

Asteroseismology

Magnetic winding

Future work

Summary

Backup slides

25

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Introduction

NS astrophysics Gmunu

Applications

Oscillations of magnetised NS Formation of hybrid star GW Asteroseismology

Magnetic winding

Future work

Summary

Backup slides

26

N3AS Annual Meeting

Patrick Chi-Kit CHEONG

Short summary

- Macroscopic quantities of the hybrid stars are not sensitive to the magnetic field until $\mathcal{B}_{\max}^* \gtrsim 5 \times 10^{17}$ G, where all quantities change significantly.
 - ▶ the magnetic deformation decreases the rest-mass density dramatically, leading to a substantial reduction in the matter fraction in the mixed phase
 - \blacktriangleright our results agree with [6], in which they considered realistic EoS with B fields

Future work

- ▶ the analysis of the corresponding GW is ongoing.
- \blacktriangleright different rotation/magnetic fields geometries
- ► 3D simulations
- \blacktriangleright realistic EOS

N3AS postdoc fellow UNH 27

Backup slides

27