Constraints on axion-like polarization oscillations in the cosmic microwave background with POLARBEAR Based on arXiv 2303 08410

> Jake Spisak N3AS News Session April 4th, 2023

Introduction to Axions

- Original QCD axion: solution to strong CP problem
- Here: a generic light pseudoscalar 'φ'
 - Also sometimes called 'axion-like particle'
 - Motivation: string theory
 - Masses of interest: (m≈10⁻²⁰-10⁻²² eV)
- Model:

$$\mathcal{L}=rac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-rac{1}{2}m_{\phi}^{2}\phi^{2}-rac{g_{\phi\gamma}}{4}\phi F_{\mu
u} ilde{F}^{\mu
u}$$

• Cosmological evolution:

$$\ddot{\phi}+3H\dot{\phi}+m^2\phi=0$$

Small EM coupling

Axions as Fuzzy Dark Matter

- Ultralight (m≈10⁻²⁰-10⁻²² eV) means huge (≳kpc) de Broglie wavelength
- Addresses issues with cold dark matter halos
 - Too many small halos
 - Density at halo center too high

Hui, Annu. Rev. Astron. Astrophys. 2021

Cold dark matter

Axion-EM Coupling: Rotation of Polarized Light

• Coupling $\frac{g_{\phi\gamma}}{4}\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$ modifies the EM field equations

• Rotates linearly polarized light: 'cosmic birefringence:

$$egin{aligned} A_{\sigma}(\eta,z) &= A_{\sigma}(\eta',z') imes \exp\left[-i\omega(\eta-\eta')+ik(z-z')
ight. \ &+ i\sigmarac{g_{\phi\gamma}}{2}\Delta\phi(\eta,z;\eta',z')
ight] \end{aligned}$$

σ=±1 photon helicity

 $\Delta \phi$: difference between ϕ at emission and absorption

Rotation angle

The Cosmic Microwave Background (CMB)

- Relic light from early universe plasma
- Released ~300,000 years after big bang
- Extremely isotropic 2.73K blackbody
- Tiny anisotropies: early universe perturbations
- Slight linear polarization

Sky map of temperature & polarization anisotropies: Planck $160 \mu K$ -160| 0.41 µK

Axion Signal in the CMB

Axion acts like an oscillating scalar field:

$$\phi(\vec{x},t) = \phi_0(\vec{x},t)\sin\left(m_\phi t + \theta(\vec{x})\right)$$

Oscillation period: days-months

Coupling to EM field rotates polarized light:

$$eta = rac{g_{\phi\gamma}}{2}(\phi(ec{x}_{
m abs},t_{
m abs})-\phi(ec{x}_{
m emit},t_{
m emit}))$$

CMB polarization angle rotation: (Federreke, PRD 2019)

$$\beta_{\rm CMB}(t) = \frac{g_{\phi\gamma}\phi_0}{2}\sin(m_{\phi}t+ heta)$$

emitted 10,000's of years 1 0.41 # ESA/Planck 13.8 billion years CMB absorbed by POLARBEAR 1

CMB

over

Axion Signal in the CMB

Axion acts like an oscillating scalar field:

$$\phi(\vec{x},t) = \phi_0(\vec{x},t)\sin\left(m_\phi t + \theta(\vec{x})\right)$$

Oscillation period: days-months

Coupling to EM field rotates polarized light:

$$eta = rac{g_{\phi\gamma}}{2}(\phi(ec{x}_{
m abs},t_{
m abs}) - \phi(ec{x}_{
m emit},t_{
m emit}))$$
 Averaged out

CMB polarization angle rotation: (Federreke, PRD 2019) Field at telescope

$$\beta_{\rm CMB}(t) = \frac{g_{\phi\gamma}\phi_0}{2}\sin(m_{\phi}t+\theta)$$

emitted 10,000's of years 1 0 41 11 ESA/Planck 13.8 billion years CMB absorbed by POLARBEAR 1

CMB

over

POLARBEAR-1 Observations

- POLARBEAR-1: CMB telescope in Atacama Desert
 - 150 GHz
 - 3.5 arc-min resolution
 - Took data 2012-2016
- Use 2 years of data: 2012-2014
- 3 small patches:
 - 'Observation': staring at 1 patch, up to 8 hours long
- 515 total observations

CMB Power Spectrum

Power spectrum "C_l": Correlate two points on the sky

Two types of polarization

Dominant in CMB

Estimating an Angle for Each Observation

• Under small rotation angle α , the maps are:

$$E_{\ell m}^{\rm obs} = E_{\ell m}^{\rm CMB} - 2\alpha B_{\ell m}^{\rm CMB}$$
$$B_{\ell m}^{\rm obs} = 2\alpha E_{\ell m}^{\rm CMB} + B_{\ell m}^{\rm CMB}$$

 Correlate single observation B map with coadded E maps to estimate angle

$$C_{\ell,obs}^{EB} = 2\alpha_{obs}C_{\ell,CMB}^{EE} + \mathcal{O}(\alpha^2)$$

Observed Calculate Known precisely

Estimating an Angle for Each Observation

• Under small rotation angle α , the maps are:

 Correlate single observation B map with coadded E maps to estimate angle

$$C_{\ell,obs}^{EB} = 2\alpha_{obs}C_{\ell,CMB}^{EE} + \mathcal{O}(\alpha^2)$$

Observed Calculate Known precisely

Angle Timestream

POLARBEAR 2023

The Axion Signal

- The signal is averaged over the ~4-8 hour observation period
 - <3% effect for sinusoid periods considered here
- Estimate signal using likelihood:

$$\mathcal{L}(A, f, \theta) \propto e^{-\frac{1}{2}\chi^2(A, f, \theta)}$$

• Frequency range:

$$\frac{1}{50}\,{\rm days}^{-1} \le f \le 0.45\,{\rm days}^{-1}$$

Large example signal in simulated data

Results: No Detection

POLARBEAR 2023

• Test for presence of signal:

 $\Delta\chi^2 \equiv \chi^2(A=0) - \chi^2(A^{\rm mle},f^{\rm mle},\theta^{\rm mle})$

- Compare to simulated distribution of $\Delta \Box^2$ values
- $\sigma_{\text{PTE}} = 1.7$: no detection claimed
- 5σ sensitivity to signals with amplitude > 1.43°

Constraints on Axion-Photon Coupling

Recall:

Problem: ϕ_0 value is **stochastic**

• Governed by Rayliegh probability distribution

$$P(\phi_0) = rac{2\phi_0}{\phi_{
m DM}^2} e^{-rac{\phi_0^2}{\phi_{
m DM}^2}}$$
 Average value from local Milky Way DM density: $rac{1}{2}\phi_{DM}^2 m_{\phi}^2 =
ho_{
m local}$

Local axion field amplitude variation vs. coherence time $\tau_c \gtrsim 6000$ years

Constraints on Axion-Photon Coupling

- Marginalize over unknown \$\overline{0}\$ amplitude
- 95% upper confidence limit: $P(g^{\text{mle}} \le g_{\text{obs}}^{\text{mle}} | g^{95})(f) = 0.05$
- Median upper limit

$$g_{\phi\gamma} < (2.4 \times 10^{-11} \,\mathrm{GeV}^{-1}) \times \left(\frac{m_{\phi}}{10^{-21} \,\mathrm{eV}}\right)$$

 First CMB analysis of this kind to incorporate stochastic effect of local axion field

16

Conclusion

- Axions (ultralight m≈10⁻²⁰-10⁻²¹ eV spin-0 fields) are a promising dark matter candidate.
- Axion-photon coupling causes the linear polarization of the Cosmic Microwave Background to oscillate in time.
- We searched for this effect with data from the POLARBEAR telescope.
- No signal found, placed constraints on the coupling vs axion mass

BACKUP

Largest Systematic Issue: Half Wave Plate Noise

- Half wave plate (HWP): rotates polarization of incoming light
- HWP was rotated in 11.25° increments between observations during 1st year
- Error at each increment: $\sigma_{HWP} = 0.56^{\circ}$
- Causes low-frequency noise
- Mitigation: minimum frequency used is 1/50 days⁻¹

Null Test Results

$$T_{\text{null}}(f) \equiv \frac{|A_{\text{null}}(f)|^2}{\sigma \left(\Re(A_{\text{null}}(f))\right)^2} \tag{17}$$

where

$$A_{\text{null}}(f) \equiv (A_1^{\text{mle}} e^{i\theta_1^{\text{mle}}} - A_2^{\text{mle}} e^{i\theta_2^{\text{mle}}})(f).$$
 (18)

TABLE I. The five null test PTE values used in the pass criteria #1.

PTE statistic	Description	PTE
$\max_{t,f} T_{\text{null}}$	Spurious axion signal	0.032
$\sum_{t,f} T_{\text{null}}$	Total chi-square	0.062
$\max_t \sum_f T_{\text{null}}$	Bad test	0.060
$\max_f \sum_{t=1}^{f} T_{\text{null}}$	Bad frequency	0.246
$\max_t T_{\text{null}}(f=0)$	Mean angle offset	0.192

TABLE II. The three null test PTE values used in the pass criteria #2.

Axion KS Test inputs	Description	Number of inputs	PTE
$\operatorname{PTE}_{f,t}(T_{\operatorname{null}})$	Overall	22380	0.128
$\text{PTE}_f(\sum_t T_{\text{null}})$	Per frequency	1492	0.122
$\operatorname{PTE}_t(\sum_f^t T_{\operatorname{null}})$	Per test	15	0.190