# Search for dark matter using diffuse gamma rays discovered by Tibet $AS_{\gamma}$

#### Tarak Nath Maity

Centre for High Energy Physics (CHEP) Indian Institute of Science, Bangalore

#### Based on

#### TNM, A K Saha, A Dubey, R Laha 2105.05680 PRD(Letter)



भारतीय विज्ञान संस्थान

Tibet Asy





- ✓ 4300 m above sea level
- ✓ Effective area: ~10% Berkeley Nat. Lab.
- ✓ No. of scintillator detectors: 597
- ✓ Each having area  $0.5 \text{ m}^2$

Amenomori et al 2104.05181 PRL



Tibel AS+MD

✓ 2.4m underground

✓ Hybridize with muon detector.

 ✓ Muon with energy greater than 1 GeV

• I . . \_ \_ \_ \_ \_ \_ . . \_ \_ \_ \_ . . . . ъ . . \_ \_ \_ \_ \_ \_ • • . . - -**•** • п 

Livetime: 719 days from February 2014 to May 2017

Muon detector: gamma and cosmic ray (CR) discriminationAmenomori et al 2104.05181 PRLTarak Nath Maity3



#### How? Photon and Proton Shower



Occasional  $\gamma$ -p interaction gives rises shower similar to hadronic shower

#### Photon and Proton Shower



©Masato TAKITA, CRA2019

#### Photon Proton Shower: Tibet Asy



After muon cut

Amenomori et al 2104.05181 PRL

Gaisser et al PRD '91

## Result: Tibet Asy



#### Observed Flux



- ✓ First detection of sub-PeV diffuse gamma rays.
- ✓ Space dependent and space independent cosmic ray models seem to fit well with data, proposed in 1804.10116
- ✓ Several recent proposals e.g., see 2104.09491, 2104.03729, 2104.05609

Amenomori et al 2104.05181 PRL

Observed Flux: whether this observation could be used for detection of dark matter?







SL+IR



✓ A 100 TeV photon must originate from our galaxy.

Esmaili, Serpico 1505.06486

**CMB** 



| TABLE S2. Galactic diffuse gamma-ray fluxes measured by the Tibet AS+MD array. |                          |                                                                                                                              |                                                                                                                              |
|--------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Energy bin<br>(TeV)                                                            | Representative $E$ (TeV) | Flux $(25^{\circ} < l < 100^{\circ},  b  < 5^{\circ})$<br>$(\text{TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1})$ | Flux $(50^{\circ} < l < 200^{\circ},  b  < 5^{\circ})$<br>$(\text{TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1})$ |
| 100 - 158                                                                      | 121                      | $(3.16 \pm 0.64) \times 10^{-15}$                                                                                            | $(1.69 \pm 0.41) \times 10^{-15}$                                                                                            |
| 158 - 398                                                                      | 220                      | $(3.88 \pm 1.00) \times 10^{-16}$                                                                                            | $(2.27 \pm 0.60) \times 10^{-16}$                                                                                            |
| 398 - 1000                                                                     | 534                      | $(6.86 \ ^{+3.30}_{-2.40}) \ \times 10^{-17}$                                                                                | $(2.99 \ ^{+1.40}_{-1.02}) \ \times 10^{-17}$                                                                                |

Amenomori et al 2104.05181 PRL

## Decaying DM: Limits

• We have done a  $\chi^2$  analysis to set the limits.



## Decaying DM: Limits



- ✓ For most of the channels (except first two generations of leptons) our bounds are stronger than previous limits.
- ✓ Our limits are robust, does not depend on choice of DM density profile.
   TNM, Saha, Dubey, Laha 2105.05680 PRD(Letter)

# An update!



## An interesting update!



Shows that the field is growing rapidly and it is interesting!

LHASSO 2210.15989

#### Conclusion

✓ Recently, Tibet  $AS_{\gamma}$  collaboration has discovered the first sub-PeV diffuse gamma-rays from the MW Galactic disk.

✓ Data broadly agrees with prior theoretical expectations

✓ We study the impact of this discovery on PeV scale decaying DM

✓ For most of the channels (except first two generations of leptons) we obtained stronger bound.

→ Near future data of these high-energy gamma-rays can be used to discover heavy decaying DM.

TNM, Saha, Dubey, Laha 2105.05680 PRD (Letter)



 $\chi 
ightarrow b ar{b}$ 

 $4 \times 10^{28}$ 

Tarak Nath Maity

email: tarak.maity.physics@gmail.com Thank you 18