

Latest Results from the KATRIN Experiment N3AS Seminar

Christian Karl Supervisor: Susanne Mertens

Technical University of Munich Max Planck Institute for Physics

January 18, 2022

Outline

- 1 Context: absolute neutrino mass scale
- 2 KATRIN experiment
- 3 Analysis
- 4 Results from our second measurement campaign
- 5 Outlook
- 6 Summary

Outline

1 Context: absolute neutrino mass scale

2 KATRIN experiment

- **3** Analysis
- 4 Results from our second measurement campaign
- 5 Outlook
- **6** Summary

Unknown absolute mass scale

- Neutrino oscillations prove that at least two neutrino mass eigenstates are non-zero
- Absolute neutrino mass still unknown
- Interesting for cosmology and origin of particle mass

Measurement techniques

Cosmology

- ▶ Observable: m_{Σ}
- + Very sensitive
- + Independent of neutrino nature
- Depends on cosmological model

Search for 0vββ

- Observable: m_{ββ}
- + Very sensitive
- + Independent of cosmological model
- Depends on neutrino nature

Kinematics of β-decay

- Observable: m_{β}
- + Independent of cosmological model
- + Independent of neutrino nature
- Less sensitive

Neutrino mass measurement from β -decay

•
$$\beta$$
-decay: $X \to Y^+ + e^- + \bar{\nu}_e$

- ▶ Endpoint energy $E_0 = Q E_{\sf rec}$ split between e^- and $\bar{\nu}_e$
- Shape distortion of electron spectrum due to non-zero neutrino mass at highest energies
- Experimental challenges:
 - Very small effect on the eV-scale
 - Low count rate in region of interest near the endpoint
- Current leading experiment: KATRIN $m_{\beta} = m_{\nu} = \sqrt{\sum_{i} |U_{ei}|^2 m_i^2} < 0.8 \,\text{eV} \ (90 \% \text{ CL})^1$

¹ M. Aker et al., arXiv:2105.08533, in print

Outline

1 Context: absolute neutrino mass scale

2 KATRIN experiment

- **3** Analysis
- 4 Results from our second measurement campaign
- 5 Outlook
- **6** Summary

KATRIN experiment

- Experimental site: Karlsruhe Institute of Technology (KIT)
- International collaboration (≈ 150 members) with participation of LBNL
- Design sensitivity: 200 meV after 1000 days

► 70 m long beamline of KATRIN

- windowless gaseous tritium source
- molecular tritium in closed loop system
- ▶ 1×10^{11} decays per second

- transport section
- magnetic guidance of the electrons
- removal of tritium gas and ions

- spectrometer section
- \blacktriangleright electrostatic filter removes electrons with energies below U_i
- \Rightarrow integral measurement, energy resolution defined by the filter properties

- focal plane detector
- ▶ 148 pixel Si-PIN detector
- simple counting of electrons, energy resolution not important

Measurement principle

- Main spectrometer acts as high-pass filter that rejects low-energy electrons
- Set different retarding energies in the main spectrometer
- Count all electrons that pass the filter
- Integral measurement of the tritium β-spectrum
- ▶ Repeat the ≈ 2 h long spectral scan hundreds of times

Outline

1 Context: absolute neutrino mass scale

- 2 KATRIN experiment
- 3 Analysis
- 4 Results from our second measurement campaign
- 5 Outlook
- **6** Summary

Model

Neutrino mass

Integrated $\beta\text{-spectrum}$ + bg

Experimental response

- MAC-E filter transmission
- Energy loss by scattering

Christian Karl

Data combination and likelihood

- Scan combination: counts and times added, retarding potentials averaged
- Pixel combination: grouped into rings to account for radial potential effects
- Free parameters
 - ▶ 1 Neutrino mass squared m_{ν}^2
 - ▶ 12 ringwise endpoints $E_{0,ring}$
 - 12 ringwise background rates B_{ring}
 - 12 ringwise signal amplitudes A_{ring}

$$\begin{split} R_{\rm ring}(qU) &= A_{\rm ring} \cdot \int_{qU}^{E_{0,\rm ring}} \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(E; m_{\nu}^2, E_{0,\rm ring}) \cdot R(qU, E) \,\mathrm{d}E + B_{\rm ring} \\ \chi^2_{\rm ring} &= \left(R_{\rm data}(qU) - R_{\rm ring}(qU)\right) \cdot V^{-1} \cdot \left(R_{\rm data}(qU) - R_{\rm ring}(qU)\right)^T \quad \text{with the total covariance matrix } V \\ \chi^2_{\rm total} &= \sum_{\rm ring} \chi^2_{\rm ring} \end{split}$$

Christian Karl

Systematics overview

Analysis strategy Blinding

Outline

1 Context: absolute neutrino mass scale

- 2 KATRIN experiment
- **3** Analysis
- 4 Results from our second measurement campaign
- 5 Outlook
- **6** Summary

Our second neutrino mass campaign

- Runtime: 2019-09-27 to 2019-11-14
- Scan time: 31 days split in 361 scans
- Electrons in ROI: 4.3 million
- Background: 220 mcps
- Source activity: 84% of nominal
- Sensitivity: $m_{\nu} < 0.7 \, {\rm eV} \, (90 \, \% \, {\rm CL})$

Data fit

- Multi-ring fit with 3 ringwise parameters, 1 shared neutrino mass squared, 37 free parameters
- ▶ Reduced χ^2 : 0.9 at 299 degrees of freedom
- \Rightarrow *p*-value: 0.8
- Good agreement of model with data

Neutrino mass squared distribution

Stat. only
$$m_{\nu}^2 = 0.27 \pm 0.29 \text{ eV}^2$$
 $E_0 = 18573.69 \pm 0.02 \text{ eV}$
Stat. and syst. $m_{\nu}^2 = 0.26 \pm 0.34 \text{ eV}^2$ $E_0 = 18573.69 \pm 0.03 \text{ eV}$

Christian Karl

Uncertainty breakdown

Frequentist limit

- Insert best-fit into belt using method of Lokhov and Tkachov² (90 % CL)
- Coincides with method of Feldman and Cousins for upper limits with $m_{\nu, {\rm fit}}^2 \ge 0$
- Sensitivity: $m_{\nu} < 0.7 \, \text{eV} \, (90 \,\% \, \text{CL})$
- Limit: $m_{\nu} < 0.9 \, \text{eV} \, (90 \,\% \, \text{CL})$
- ⇒ First sub-electronvolt direct neutrino mass measurement and sensitivity

 $^2\,$ A. V. Lokhov and F. V. Tkachov, Phys. Part. Nucl., May 2015

Christian Karl

Bayesian analysis

Analysis by Björn Lehnert and Ann-Kathrin Schütz at LBNL

- \blacktriangleright Bayesian sampling with flat positive prior in m_{ν}^2
- Systematics treated with priors as well as an approach based on Monte Carlo sampling
- Limit by integrating the posterior distribution up to 90 %
- ▶ Result: $m_{\nu}^2 < 0.73 \, \text{eV}^2$

 $\Rightarrow m_{\nu} < 0.85 \,\mathrm{eV}$

Combination with first neutrino mass campaign

Different strategies pursued:

- 1. Combined fit with shared neutrino mass
- 2. Multiply distributions from MC propagation
- 3. Bayesian analysis: use posterior of first campaign as prior for second campaign
- Frequentist: $m_{\nu} < 0.8 \, \mathrm{eV} \, (90 \, \% \, \mathrm{CL})$
- Bayesian: $m_{
 u} < 0.7 \, {
 m eV} \, (90 \, \% \, {
 m CI})$

Outline

1 Context: absolute neutrino mass scale

- 2 KATRIN experiment
- **3** Analysis
- 4 Results from our second measurement campaign
- 5 Outlook
- **6** Summary

Outlook: further neutrino mass campaigns

- Roughly nine times more electrons in ROI
- Reduced background and systematic uncertainties
- Expected sensitivity below 0.5 eV (90 % CL)

- Unblinding procedure started at the end of last year
- Further measurement campaigns planned for 2022

Outlook: challenge of combined analysis

- Model calculation numerically expensive
- Slow control parameters such as gas density differ between measurement campaigns
- ightarrow Data segmentation over time
- Field settings differ over radius
- ightarrow Data segmentation over detector patches
- \Rightarrow More than 1000 free parameters in final fit, computationally not feasible with current (slow) model

Outlook: improved performance using a NN

- Need faster model to analyse final dataset
- Our idea: train a neural network to learn the full integrated spectrum depending on a few parameters
- ▶ Induced bias $< 1 \times 10^{-3} \, \mathrm{eV}^2$
- Improved performance by several orders of magnitude
- Successful proof-of-concept for Monte Carlo data similar to final KATRIN dataset

C. Karl et al., arXiv:2201.04523

Outline

1 Context: absolute neutrino mass scale

- 2 KATRIN experiment
- **3** Analysis
- 4 Results from our second measurement campaign
- 5 Outlook

6 Summary

Wrapping up

- ▶ 2nd KATRIN neutrino mass campaign analysed
- Sensitivity: $m_{\nu} < 0.7 \, \text{eV} \, (90 \,\% \, \text{CL})$
- Best fit: $m_{\nu}^2 = 0.26 \pm 0.34 \, \text{eV}^2$
- Limit: $m_{\nu} < 0.9 \, \text{eV} \, (90 \,\% \, \text{CL})$
- Limit combined with first campaign: $m_{\nu} < 0.8 \, \text{eV} (90 \% \text{ CL})$
- Publication in print (arXiv:2105.08533)
- Still only about ¹/₅₀ the final statistics to be collected in the coming years, stay tuned! :)

Thanks to everyone involved! Thank you for your attention!

Backup

Backup: comparison of measurement techniques

Backup: bg reduction via shifted analysing plane

- Main background proportional to flux-tube volume in the main spectrometer
- Origin: radioactive decay of Pb²¹⁰ in the spectrometer walls
- Idea: reduce flux-tube volume by shifting the "analysing plane"
- ⇒ Reduce background by factor of two, but fields radially inhomogeneous

Backup: comparing the first two campaigns

quantity	Knm1	Knm2	improved
best fit (eV 2)	-0.96	0.26	_
Poisson uncert. (eV ²)	0.97	0.29	factor 3.3
other uncert. (eV^2)	0.31	0.16	factor 1.9
total uncert. (eV^2)	1.04	0.34	factor 3.2
90% CL sensitivity (eV)	1.1	0.7	factor 1.5
90% CL limit (eV)	1.1	0.9	factor 1.2

- Significantly more statistics collected
- Improvement of all "known" systematics
- New systematic effects identified, counter-measurements in progress

Comparison of sensitivity