Light Dark Matter: Collective Effects in the Lab and in Stars

N3AS Seminar, University of California, Berkeley (virtual) March 29, 2022

Edoardo Vitagliano

edoardo@physics.ucla.edu
University of California, Los Angeles

LDM: Collective Effects in the Lab and in Stars

I. Axion dark matter

- Solving the strong CP problem
- Why is the QCD axion a good DM candidate?

II. Plasma Haloscopes: axion detection

- From axion-photon coupling to axion-plasmon coupling
- Axion detection with nanowires: a classical calculation

III. Dark matter detection: a thermal field theory approach

- Axion detection with nanowires: TFT calculation
- Plasmon-axion mixing in stars

Conclusions

LDM: Collective Effects in the Lab and in Stars

I. Axion dark matter

- Solving the strong CP problem
- Why is the QCD axion a good DM candidate?

II. Plasma Haloscopes: axion detection

- From axion-photon coupling to axion-plasmon coupling
- Axion detection with nanowires: a classical calculation

III. Dark matter detection: a thermal field theory Time dependent approach

- Axion detection with nanowires: TFT calculation
- Plasmon-axion mixing in stars

Conclusions

Axion dark matter (aka: two lessons about axions)

Axion dark matter (aka: two lessons about axions) (aka: how to kill two birds with one stone)

CP violation in neutrons: electric dipole moment

CP violation in neutrons: electric dipole moment

EDM would violate P...

CP violation in neutrons: electric dipole moment

It is small. Perhaps because it is not allowed...

Strong CP problem hint, cont'd

The Lagrangian describing hadrons is

$$\tilde{G}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G_{\rho\sigma}$$

$$= G\tilde{G}$$

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q} (i \not \!\!D - m_{q} e^{i\theta_{q}}) \psi_{q} - \frac{1}{4} G^{2} - \theta \frac{\alpha_{s}}{8\pi} G \tilde{G}$$

Real mass

Yukawa phase

CP odd

Strong CP problem hint, cont'd

The Lagrangian describing hadrons is

$$\tilde{G}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}G_{\rho\sigma}$$

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q}(i\rlap{/}D - m_{q}e^{i\theta_{q}})\psi_{q} - \frac{1}{4}G^{2} - \theta\frac{\alpha_{s}}{8\pi}G\tilde{G}$$

Real mass

Yukawa phase

CP odd

Remove phase by rotation finding

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q} (i \not \! D - m_{q}) \psi_{q} - \frac{1}{4} G^{2} - (\theta - \operatorname{arg} \det M_{q}) \frac{\alpha_{s}}{8\pi} G \tilde{G}$$

$$|\overline{\theta}| < 10^{-11}$$

Strong CP problem hint, cont'd

The Lagrangian describing hadrons is

$$\tilde{G}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}G_{\rho\sigma}$$

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q}(i\rlap{/}D - m_{q}e^{i\theta_{q}})\psi_{q} - \frac{1}{4}G^{2} - \theta\frac{\alpha_{s}}{8\pi}G\tilde{G}$$

Real mass

Yukawa phase

CP odd

Remove phase by rotation finding

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q} (i \not \! D - m_{q}) \psi_{q} - \frac{1}{4} G^{2} - (\theta - \operatorname{arg} \det M_{q}) \frac{\alpha_{s}}{8\pi} G \tilde{G}$$

$$|\overline{\theta}| < 10^{-11}$$

Why?

The (QCD) axion

Introduce a global symmetry spontaneously broken at some high scale fa, the Peccei-Quinn symmetry

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q} (i \not \!\!D - m_{q}) \psi_{q} - \frac{1}{4} G^{2} - \bar{\theta} \frac{\alpha_{s}}{8\pi} G \tilde{G}$$

$$q_{L} \to e^{-i\alpha/2} q_{L} \atop q_{R} \to e^{+i\alpha/2} q_{R} \rbrace U(1)_{\text{chiral}} \atop m_{q} \to m_{q} e^{-i\alpha} \rbrace U(1)_{PQ}$$

The (QCD) axion

Introduce a global symmetry spontaneously broken at some high scale fa, the Peccei-Quinn symmetry

$$\mathcal{L}_{QCD} = \sum_{q} \overline{\psi}_{q} (i \not \!\!\!D - m_{q}) \psi_{q} - \frac{1}{4} G^{2} - \bar{\theta} \frac{\alpha_{s}}{8\pi} G \tilde{G}$$

$$\begin{cases} q_{L} \to e^{-i\alpha/2} q_{L} \\ q_{R} \to e^{+i\alpha/2} q_{R} \end{cases} U(1)_{\text{chiral}}$$

$$\begin{cases} U(1)_{PQ} \qquad \alpha \equiv \frac{a}{f_{a}} \end{cases}$$

$$m_{q} \to m_{q} e^{-i\alpha}$$

Lesson 1

After the SSB, we have a pseudo Goldstone boson rotating the angle away

STRONG CP PROBLEM SOLVED 🗸

The (QCD) axion is massive

Lesson 1, cont'd

The same rotation gives a mass to the axion (w/ two quarks)

$$m_a^2 = \frac{m_u m_d}{m_u + m_d} \frac{\langle \bar{u}u \rangle}{f_a^2}$$

In other words, give enough time to the universe and it relax to a CP conserving QCD Lagrangian*

*your mileage may vary

Axion cosmology in a nutshell

Suppose PQ is broken before inflation. The axion field is homogeneous

$$\ddot{a} + 3H\dot{a} + \frac{\partial V}{\partial a} = 0$$
 where $H = \frac{\dot{R}}{R}$ $V = m_a^2 a$

$$H = \frac{\dot{R}}{R}$$

$$V = m_a^2 a$$

Axion cosmology in a nutshell

Suppose PQ is broken before inflation. The axion field is homogeneous

$$\ddot{a} + 3H\dot{a} + \frac{\partial V}{\partial a} = 0$$
 where $H = \frac{\dot{R}}{R}$ $V = m_a^2 a$

After being a damped harmonic oscillator, it becomes

$$\ddot{a} \simeq -m_a^2 a \qquad \longrightarrow \qquad a \simeq \left[\frac{R(H \sim m_a)}{R(t)} \right]^{3/2} a_0 \cos m_a t$$

Axion cosmology in a nutshell

Suppose PQ is broken before inflation. The axion field is homogeneous

$$\ddot{a} + 3H\dot{a} + \frac{\partial V}{\partial a} = 0$$
 where $H = \frac{\dot{R}}{R}$ $V = m_a^2 a$

$$H = \frac{\dot{R}}{R}$$

$$V = m_a^2 a$$

After being a damped harmonic oscillator, it becomes

$$\ddot{a} \simeq -m_a^2 a \qquad -$$

$$\ddot{a} \simeq -m_a^2 a \qquad \longrightarrow \qquad a \simeq \left[\frac{R(H \sim m_a)}{R(t)} \right]^{3/2} a_0 \cos m_a t$$

Including an additional temperature dependence

$$a \simeq \theta_0 f_a \sqrt{\frac{m_a(T_C)}{m_a(T)}} \left[\frac{R(H \sim m_a)}{R(t)} \right]^{3/2} a_0 \cos m_a t$$
 $\rho_a = \frac{1}{2} m_a^2 a^2$

$$\rho_a = \frac{1}{2} m_a^2 a^2$$

Lesson 2

Axion can be a dark matter candidate

DM MISTERY SOLVED **V**

QCD Axion cosmology in a nutshell

(If broken after inflation, more axions produced from cosmic strings and domain walls)

QCD Axion cosmology in a nutshell

(If broken after inflation, more axions produced from cosmic strings and domain walls)

New QCD axion detection ideas!

Examples:

- MADMAX, Phys.Rev.Lett. 118 (2017) 9, 091801
- Plasma haloscope (Lawson, Millar, Pancaldi, EV, Wilczek), Phys. Rev. Lett. 123 (2019) 14, 141802

QCD Axion cosmology in a nutshell

(If broken after inflation, more axions produced from cosmic strings and domain walls)

Buschmann et al., Nature Communications volume 13, Article number: 1049 (2022)

Latest results: $40 \lesssim m_a/\mu \text{eV} \lesssim 180$

How to detect the axion

Axion searches (bird's eye)

The QCD axion solves the strong CP problem and is a good DM candidate. How to detect it?

$$\mathcal{L} = -\frac{1}{4}g_{a\gamma}aF\tilde{F} = g_{a\gamma}a\mathbf{E} \cdot \mathbf{B}$$

(model dependent)

Primakoff effect

Axion searches (bird's eye)

The QCD axion solves the strong CP problem and is a good DM candidate. How to detect it?

$$\mathcal{L} = -\frac{1}{4}g_{a\gamma}aF\tilde{F} = g_{a\gamma}a\mathbf{E} \cdot \mathbf{B}$$
(model dependent)

Axion searches (bird's eye)

The QCD axion solves the strong CP problem and is a good DM candidate. How to detect it?

$$\mathcal{L} = -\frac{1}{4}g_{a\gamma}aF\tilde{F} = g_{a\gamma}a\mathbf{E} \cdot \mathbf{B}$$
(model dependent)

Latest predictions post-inflationary scenario

From axion-photon to axion-plasmon

Axion DM is slow and massive. We need to correct for the energy-momentum

conservation

In cavity searches, the cavity size~Compton wavelength. But as they become more massive, it is prohibitive

From axion-photon to axion-plasmon

Axion DM is slow and massive. We need to correct for the energy-momentum

conservation

In cavity searches, the cavity size~Compton wavelength. But as they become more massive, it is prohibitive

Alternative:

In a medium, photons are "massive" with mass=plasma frequency! The basic idea of tunable plasma haloscopes:

$$\omega_{pl} = m_a$$

Axion detection in a medium

Two equivalent descriptions:

- Maxwell equations in a medium
- Thermal field theory

Axion detection in a medium

Two equivalent descriptions:

Thermal field theory

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - j^{\mu}A_{\mu} + \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}m_{a}^{2}a^{2} - \frac{g_{a\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu}$$

The axion field is $a(t) = a_0 e^{-im_a t}$ which modifies the Maxwell equations

$$\nabla \times \mathbf{H} - \dot{\mathbf{D}} = g_{a\gamma} \mathbf{B} \dot{a}$$
 $\mathbf{D} = \epsilon \mathbf{E}$
 $\mathbf{H} = \mathbf{B}/\mu$

(Drude model)

Axion detection in a medium

Two equivalent descriptions:

Thermal field theory

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - j^{\mu}A_{\mu} + \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}m_{a}^{2}a^{2} - \frac{g_{a\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu}$$

The axion field is $a(t) = a_0 e^{-im_a t}$ which modifies the Maxwell equations

$$\nabla \times \mathbf{H} - \dot{\mathbf{D}} = g_{a\gamma} \mathbf{B} \dot{a}$$
 $\mathbf{D} = \epsilon \mathbf{E}$
 $\mathbf{H} = \mathbf{B}/\mu$

$$\mathbf{E} = -\frac{g_{a\gamma}\mathbf{B}a}{\epsilon} = -g_{a\gamma}\mathbf{B}a\left(1 - \frac{\omega_{pl}^2}{\omega_a^2 - i\omega_a\Gamma}\right)^{-1}$$

Dielectric function

Damping rate

Where we have used
$$\ \epsilon=1-rac{\omega_{pl}^2}{\omega_a^2-i\omega_a\Gamma}$$
 (Drude model)

Wire metamaterial

We have a resonance! We need the damping (resistivity) to be low, and the plasma frequency must be tunable

$$\mathbf{E} = -\frac{g_{a\gamma}\mathbf{B}a}{\epsilon} = -g_{a\gamma}\mathbf{B}a\left(1 - \frac{\omega_{pl}^2}{\omega_a^2 - i\omega_a\Gamma}\right)^{-1}$$

Pendry et al. J. Phys. Condens. Matter 10, 1998

Possible ideas: semiconductors, Josephson junctions, wire metamaterials

Wire metamaterial

We have a resonance! We need the damping (resistivity) to be low, and the plasma frequency must be tunable

$$\mathbf{E} = -\frac{g_{a\gamma}\mathbf{B}a}{\epsilon} = -g_{a\gamma}\mathbf{B}a\left(1 - \frac{\omega_{pl}^2}{\omega_a^2 - i\omega_a\Gamma}\right)^{-1}$$

Pendry et al. J. Phys. Condens. Matter 10, 1998

Possible ideas: semiconductors, Josephson junctions, wire metamaterials

In a usual metal,

$$\omega_{pl}^2 = \frac{e^2 n_e}{m_e}$$

Wire metamaterial

We have a resonance! We need the damping (resistivity) to be low, and the plasma frequency must be tunable

$$\mathbf{E} = -\frac{g_{a\gamma}\mathbf{B}a}{\epsilon} = -g_{a\gamma}\mathbf{B}a\left(1 - \frac{\omega_{pl}^2}{\omega_a^2 - i\omega_a\Gamma}\right)^{-1}$$

Pendry et al. J. Phys. Condens. Matter 10, 1998

Possible ideas: semiconductors, Josephson junctions, wire metamaterials

In a usual metal,

$$\omega_{pl}^2 = \frac{e^2 n_e}{m_e}$$

but in a nanowire system

$$n_e = rac{n_{
m metal}\pi r^2}{a^2}$$
 less charges

$$m_{eff} = rac{e^2 \pi r^2 n_{
m metal}}{2\pi} \log rac{a}{r}$$
 effective mass

$$\omega_{pl}^2 = \frac{e^2 n_e}{m_{\text{eff}}} = \frac{2\pi}{a^2 \log a/r}$$

Setup

The axion generates an electric field

$$\mathbf{E} = -\frac{g_{a\gamma}\mathbf{B}a}{\epsilon} = -g_{a\gamma}\mathbf{B}a\left(1 - \frac{\omega_{pl}^2}{\omega_a^2 - i\omega_a\Gamma}\right)^{-1}$$

$$\log a/r \gg 1 \left\{ \begin{array}{l} r = 10\mu m \\ a = 3mm \end{array} \right.$$

$$\omega_{pl}^2 = \frac{e^2 n_e}{m_{\text{eff}}} = \frac{2\pi}{a^2 \log a/r} \simeq (100 \,\text{GHz})^2$$

- Copper wires
- Strong magnetic field (solenoid is fine!)
- Not limited by size
- Tunability

Projected reach

Loss rate
$$P = \Gamma U = \kappa \Gamma \frac{1}{4} \int \left(\frac{\partial (\epsilon \omega)}{\partial \omega} |\mathbf{E}|^2 + |\mathbf{B}|^2 \right) dV$$
$$= \kappa \mathcal{G} V \frac{Q}{m_a} \rho_a g_{a\gamma}^2 B^2$$

where we used

$$Q = \frac{\omega}{\Gamma}$$
 Quality factor

$$\mathcal{G} = \frac{\epsilon_z^2}{a_0^2 g_{a\gamma}^2 B_{\rm e}^2 V} \frac{1}{2} \int \left(\frac{\partial (\epsilon_z \omega)}{\partial \omega} |\mathbf{E}|^2 + |\mathbf{B}|^2 \right) dV \qquad \text{"geometric factor", goes to 1}$$

signal coupling efficiency factor

$$\rho_a = \frac{1}{2} m_a^2 a_0^2$$

Scan rate

$$P = \Gamma U = \kappa \Gamma \frac{1}{4} \int \left(\frac{\partial (\epsilon \omega)}{\partial \omega} |\mathbf{E}|^2 + |\mathbf{B}|^2 \right) dV$$
$$= \kappa \mathcal{G} V \frac{Q}{m_a} \rho_a g_{a\gamma}^2 B^2$$

Dicke's equation

$$\frac{S}{N} = \frac{P}{T_{\rm sys}} \sqrt{\frac{\Delta t}{\Delta \omega_a}} > 3$$

We can use a set of reasonable parameters

$$Q = 10^{2}$$

$$V = 0.8 m^{3}$$

$$\Delta \omega_{a} = 10^{-6} m_{a}$$

$$B = 10 T$$

$$T_{\text{sys}} = m_{a}$$

Lawson, Millar, Pancaldi, **Vitagliano**, Wilczek (2019) Gelmini, Millar, Takhistov, **Vitagliano** (2020)

Featured in Physics Editors' Suggestion Open Access

Tunable Axion Plasma Haloscopes

Matthew Lawson, Alexander J. Millar, Matteo Pancaldi, Edoardo Vitagliano, and Frank Wilczek Phys. Rev. Lett. **123**, 141802 – Published 1 October 2019

PhySICS See Synopsis: A New Plasma-Based Axion Detector

From coverage to the experiment

TROVATO UN NUOVO MODO PER "SENTIRE" LA DARK MATTER

Sintonizzatevi su radio assione

Physicists report a way to 'hear' dark matter

OCTOBER 9, 2019

I fisici dell'Università di Stoccolma e del Max Planck Institute for Physics

Physicists propose listening for dark matter with plasma-based "axion radio"

Axions inside a strong magnetic field will generate a small electric field.

Axion Longitudinal Plasmon HAloscope

Stockholm University, UC Berkeley, MIT, ITMO, the University of Arizona, Cambridge, the University of Maryland and UC Davis

https://axiondm.fysik.su.se/alpha/

Dark matter detection: a TFT approach

Crash course in thermal field theory

See also: Weldon (1983), Redondo and Raffelt (2013), An, Pospelov and Pradler (2013), Hardy and Lasenby (2016)

Crash course in thermal field theory

Thermal field theory is very similar to zero temperature QFT.

The imaginary part of a particle self energy

$$\operatorname{Im}\Pi = -\omega\Gamma$$

gives the rate with which a distribution of particles goes to equilbrium. For bosons

$$\Gamma = \Gamma_{\rm abs} - \Gamma_{\rm prod}$$

$$\frac{\partial f}{\partial t} = -f\Gamma_{\rm abs} + (1+f)\Gamma_{\rm prod}$$

This is analogous to the optical theorem in QFT, the imaginary part of the self energy is related to the decay rate

Crash course in thermal field theory

$$\frac{\partial f}{\partial t} = -f\Gamma_{\text{abs}} + (1+f)\Gamma_{\text{prod}}$$

Suppose we have two particles that can be converted into each other (so there is mixing)

Two cases:

- Many axions, no photons (laboratory)
- Many photons, no axions (stars)

The power deposited in the detector is

$$P = V_d \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \, \omega \Gamma_{\text{abs}}^X$$

The master equations for axions and plasmons are

$$rac{\partial f_a}{\partial t} \simeq -f_a \Gamma^{\mathrm{axion}}$$
 $rac{\partial f_{\gamma}}{\partial t} = -f_{\gamma} \Gamma^{\mathrm{axion}}_{\mathrm{prod}} + (1 + f_{\gamma}) \Gamma^{\mathrm{axion}}_{\mathrm{abs}}$

Equilibrium is reached when
$$\Gamma_{
m abs}^{
m axion} \simeq (f_a - f_\gamma) \Gamma^{
m axion} \simeq - f_a rac{{
m Im} \Pi_{
m axion}}{\omega}$$

SO we just need to compute the imaginary part of the polarization tensor!

The self energy of an axion is

$$\Pi_{\text{axion}} = m_a^2 + K^2 g_{a\gamma}^2 B_{||}^2 \frac{1}{K^2 - \Pi_{\gamma,L}(K)} + \omega^2 g_{a\gamma}^2 B_{\perp}^2 \frac{1}{K^2 - \Pi_{\gamma,T}(K)},$$

The dispersion relation of the plasmon is

$$\omega^2 - k^2 = \text{Re} \,\Pi_{\mathrm{T,L}}$$
 $\text{Re} \,\Pi_T = \omega_p^2$,
 $\text{Re} \,\Pi_L = \frac{K^2}{\omega^2} \omega_p^2$, $\omega_p = e^2 \frac{n_e}{m_e^2}$

The power deposited in the detector is

$$P = V_d \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \,\omega \Gamma_{\rm abs}^X$$

Using $\Gamma_T = \Gamma_L \equiv \Gamma_\gamma$ we have

$$\Gamma_{
m abs}^{
m axion} = f_a rac{g_{a\gamma}^2 B^2}{\Gamma_{\gamma}} \qquad f_a = N(2\pi)^3 \delta^3(\mathbf{k})$$

$$P = V \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \omega \Gamma_{\text{abs}}^{\text{axion}} = g_{a\gamma}^2 B^2 \frac{Q}{\omega} V \rho_a$$

Projected reach UCLA $P = \Gamma U = \kappa \Gamma \frac{1}{4} \int \left(\frac{\partial (\epsilon \omega)}{\partial \omega} |\mathbf{E}|^2 + |\mathbf{B}|^2 \right) dV$ $= \kappa \mathcal{G} V \frac{Q}{m_a} \rho_a g_{a\gamma}^2 B^2$ Loss rate where we used $Q = \frac{\omega}{\Gamma}$ Quality factor $\mathcal{G} = \frac{\epsilon_z^2}{a_0^2 q_{xx}^2 B_x^2 V} \frac{1}{2} \int \left(\frac{\partial (\epsilon_z \omega)}{\partial \omega} |\mathbf{E}|^2 + |\mathbf{B}|^2 \right) dV$ "geometric factor", goes to 1 signal coupling efficiency factor $\rho_a = \frac{1}{2} m_a^2 a_0^2$ $P = V \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \omega \Gamma_{\text{abs}}^{\text{axion}} = g_{a\gamma}^2 B^2 \frac{Q}{\omega} V \rho_a$

Collective effects in stars

In the **lab**: one can compute the signal in a plasma haloscope and obtain the classical result

In the **sky**: Energy loss in stars and supernovae, other signals

Collective effects in stars

In the **sun**: a previously overlooked contribution to the axion flux in helioscopes

In **supernovae**: a previously overlooked contribution to (heavy) axion flux

Caputo, Millar, **Vitagliano** (2020) O'Hare, Caputo, Millar, **Vitagliano** (2020)

Caputo, Carenza, Lucente, Vitagliano et al., Phys.Rev.Lett. 127 (2021) 18, 181102

Conclusions

Conclusions

- The axion is a well-motivated dark matter candidate
- Plasma haloscopes are a promising new avenue
- We can probe larger mass axions
- We have competitive sensitivity, larger volumes, cheaper magnets (we can use a solenoid, and potentially probe any mass with the right metamaterial)
- The same process can be very important in stars and supernovae

Thank you

This project has received funding/support from the DOE through UCLA.